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RESUMO 

A Captura por Unidade de Esforço (CPUE) estandardizada de pescarias comerciais, ou seja, dados de 

capturas comerciais modelados estatisticamente para remoção dos efeitos dependentes da pesca, são 

por vezes utilizados como indicadores indiretos de abundância e de biomassa na avaliação de stocks. 

Neste trabalho, reportamos os resultados de um workshop de modelação de CPUEs que teve lugar 

virtualmente nos dias 3-5 Novembro 2020 e 6-7 Janeiro 2021, organizado pelo IPMA e integrado no 

âmbito do PNAB/DCF (Programa Nacional de Amostragem Biológica). Apresentamos um sumário dos 

métodos usados, focando sobretudo Modelos Lineares Generalizados (GLM) usando distribuição 

Tweedie para tratamento de capturas zero. Providenciamos exemplos de casos-estudo desenvolvidos e 

discutidos no workshop, nomeadamente lagostim (Nephrops norvegicus) capturado pela frota de 

arrasto de crustáceos, tamboril-sovaco-preto (Lophius budegassa) capturado pela frota polivalente, 

rejeições de cavala (Scomber colias) e pescada (Merluccius merluccius) capturados pela frota Portuguesa 

de arrasto. As discussões relativas à exploração dos dados e ajuste dos modelos resultou em algumas 

recomendações para trabalho futuro, sumarizadas no final deste relatório. 

Palavras-chave: Captura-Por-Unidade-Esforço (CPUE), indicadores de abundância e biomassa, 

padronização de captura-por-unidade-esforço, dados dependentes da pesca, avaliação de stocks. 

ABSTRACT 

Title: Report of the workshop on modelling Catch-Per-Unit-Effort (WKCPUE). Standardized Catch-Per-

Unit-Effort (CPUE), i.e., data from commercial fisheries that have been statistically modelled to remove 

fishery dependant effect, are often used in stock assessments as indicators of abundance and biomass. 

Here we report the outcomes of the workshop on modeling CPUEs that took place virtually on the 3-5 

November 2020 and 6-7 January 2021 organized by IPMA and integrated in PNAB/DCF (National 

Program of Biological Sampling). We provide a summary of the methods used, focusing particularly on 

Generalized Linear Models (GLM) with Tweedie distributions for treatment of zero captures. We provide 

examples of case-studies developed and discussed, namely Norway lobster (Nephrops norvegicus) 

caught by crustacean trawlers, black-bellied anglerfish (Lophius budegassa) caught by the polyvalent 

fleet, chub mackerel (Scomber colias) discards and hake (Merluccius merluccius) caught by the 

Portuguese trawl fleet. The discussions on the exploration of input data and model fitting resulted in 

some recommendation for future work, summarized at the end of the report. 

Keywords: Catch-Per-Unit-Effort (CPUE), indicators of abundance and biomass, standardization of catch-

per-unit-effort, fishery-dependent data, stock assessment. 
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1 INTRODUCTION 

1.1 Terms of reference 

The Workshop on Modelling Catch-per-Unit-Effort (WKCPUE), chaired by Rui Coelho 

met virtually on the 3-5 November 2020 and the 6-7 January 2021, to explore and 

discuss the application of methods for estimating trends in relative abundance and 

biomass based on standardized Catch-Per-Unit-Effort (CPUE) and for estimating 

Discard-Per-Unit-Effort (DPUE) to derive total discards, with focus on fishing effort data 

sets with a high mass of zero catches of a selected number of case-studies. 

The workshop was organized within the scope of the National Programme for 

Biological Sampling (PNAB/DCF) co-financed by National funds and the European 

Maritime and Fisheries Fund (EMFF). 

1.2 Background 

CPUE is used in many stock assessments assuming that CPUE is proportional to stock 

abundance and biomass. Several methods are regularly applied to reduce the influence 

of factors affecting the estimate of CPUE, such as generalized linear models (GLM), 

generalized linear mixed models (GLMM), generalized additive models (GAM), 

regression trees (RTs) and machine learning techniques (e.g., Maunder and Punt, 2004; 

Hoyle et al., 2014; Forrestal et al., 2019; Yang et al., 2020). Among these, the 

application of GLM is the approach mostly followed to estimate standardized 

abundance indices. However, when dealing with bycatch species or with species not 

frequently discarded, it is common to have data sets with high mass of zero catches 

despite non-zero effort records. In this case, GLM model fitting based on log-

transformed data (adding a constant to the response variable) or by collapsing strata 

to eliminate the zero catch observations may not be appropriate. In fact, the log-

transformation procedure may induce bias in the estimate of the year effect while the 

strata combination procedure may mask information contained in levels of 

explanatory variables not related to the collapsed strata which may be important to 

explain the annual relative levels of abundance (year effect). 

To overcome these issues in the estimation of the fishery-dependent abundance or 

biomass indices, the delta, zero-inflated and hurdle models have been used (e.g., Lo et 

al., 1992, Campbell, 2004, Coelho et al., 2011). The delta approach is a two step-

method which combines the modelling of the zero catches with the modelling of the 

positive catches. Zero-inflated models are typically used if the data contains an excess 

of structural and sampling zeros, whereas hurdle models are generally used when 

there is only an excess of sampling zeros. Another way of dealing with a high mass of 

zero catches is to use a statistical distribution that allows for zero observations, such as 

the Tweedie family of distributions (Dunn and Smyth, 2008). Therefore, the Tweedie 
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method (e.g., Shono, 2008; Coelho et al., 2020), having the advantage of handling the 

zero catch data in a unified way, was selected for the exploration of CPUE and DPUE 

standardization of the species showing high mass of zero catches, used as case-studies 

during the workshop. 

 

1.3 Conduct of the workshop 

The four case-studies selected for the workshop were: 

 CS1: Norway lobster (Nephrops norvegicus) caught by the Portuguese 

crustacean trawl fishery (Cristina Silva and Bárbara Serra-Pereira); 

 CS2: Black anglerfish (Lophius budegassa) caught by the Portuguese polyvalent 

fleet (Teresa Moura); 

 CS3: Chub mackerel (Scomber colias) discards by the Portuguese the trawl 

fishery (Ana Cláudia Fernandes and Manuela Azevedo); 

 CS4: Hake (Merluccius merluccius) caught by the Portuguese trawl fishery 

(Hugo Mendes and Andreia Silva).  

Previous to the workshop the chair made available to participants a data set with 

swordfish (Xiphias gladius) and blue marlin (Makaira nigricans) data, simulating a 

longline fishery and an R code for data exploration and model fitting. The swordfish 

data set included few zero catch, simulating data from a target fishery while the blue 

marlin data set had many zero observations, simulating an occasional bycatch species. 

The workshop had two meetings. The November meeting started with the introduction 

to CPUE standardization and a training session using the swordfish and blue marlin 

simulated data sets, with model fitting, analysis of fitting diagnostics and discussion of 

results. The training session was followed by the presentation of the data available for 

each case-study, the discussion of the criteria for data selection, including likely 

reasons for the zero observations, and the preliminary analysis for CPUE (CS1, CS2) and 

DPUE (CS3) standardization. Discussions focused on further exploration of the data 

sets and model fitting and a plan was settled for the work to be carried out for the 

second workshop meeting, in January 2021, when the CS4 was also addressed. 

It is noted that while the workshop introduction and example provided was mainly 

focused on one particular type of analysis (Tweedie distribution, that can model CPUE 

data that includes discrete zeros as well as continuous non-zeros), the Case Studies 

were developed by the respective modellers considering the specificities of each 

particular case. 
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1.4 Structure of the report 

The structure of the report is as follows: 

 Section 2 describes the background material and the training session. 

 Section 3 describes the work developed and discussed during the workshop for 

CS1. 

 Section 4 describes the work developed and discussed during the workshop for 

CS2. 

 Section 5 describes the work developed and discussed during the workshop for 

CS3. 

 Section 6 documents the method currently used to estimate the standardized 

CPUE for hake in the Portuguese trawl fishery and for providing estimates of 

the year effect (CS4). 

 Section 7 summarises the workshop conclusions and recommendations for 

future work. 

 Annex 1 provides a description of the Tweedie distribution and its 

characteristics. 

 Annex 2 provides additional analysis for CS3 

 Annex 3 provides the list of participants 

Note that the references cited are provided at the end of each section. 
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2 WORKSHOP PRESENTATIONS AND EXAMPLES 

2.1 Introduction 

In this section we report the first part of the workshop where two theoretical 

presentations and one practical example were provided. Specifically, on section 2.2 we 

describe the theoretical background and workshop presentations, and then on section 

2.3, a practical example is provided with R code using simulated datasets. This last 

component of the practical exercises was based on datasets that were built and used 

by Forrestal et al. (2019) in a CPUE simulation study. 

 

2.2 Presentations on CPUE standardization 

2.2.1 Why do we need indices of abundance? 

Stock assessment models reconstruct population history and keep track of abundance 

over time. Those models describe the fish population dynamics and their interaction 

with the fisheries and need guidance to tell if abundance (biomass) is increasing or 

decreasing or stable at any point in time. As such, indices of abundance are needed 

and commonly used for stock assessment models. Ideally, fishery independent indices 

are used, but that is not always possible. In some cases, there is the need to explore 

and apply fisheries-dependent indices to assessment models. 

 

2.2.2 The CPUE as an index of abundance 

The most used index of abundance in species exploited by commercial fisheries is the 

catch-per-unit-effort (CPUE). Examples of CPUEs used in tuna and tuna-like fisheries 

are numbers or biomass of fish per 1000 hooks (e.g., longline fisheries), metric tons 

per day (e.g., pole and line fisheries) or per trip (e.g., oceanic gillnet fisheries). 

Assuming that the biomass of fish caught per unit of fishing effort is proportional to 

the abundance of the fish, we have: 

 

 
     

where C is catch, E is effort, q is catchability and B is biomass 

The catch rate directly estimated from the fishery data (nominal CPUE) can be an index 

of abundance only if   is constant over time. However,   usually changes over time 

due to many variables, as for example: 1) changes in fishing methods and techniques; 
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2) changes in biological and environmental factors and, 3) changes in the fishing effort 

with different catchability characteristics. 

A simple example is when the depth of the gear operation changes at some point in 

time and the fishery explores depths where the resource is more abundant, meaning 

that the catch rates change but the biomass has not changed. In such cases, the raw 

(nominal) CPUE is not an appropriate index of abundance. 

As such, we need to make sure that any changes in catchability are estimated and 

accounted for, implying the removal of the impact on catch rates of factors other than 

abundance. This process is usually referred to as “CPUE standardization”. 

 

2.2.3 CPUE standardization models 

The most common method used for CPUE standardization is the Generalized Linear 

Model (GLM) (McCullagh and Nelder, 1989; Agresti, 2002). However, other models 

have also been applied, as, for example, Generalized Additive Models (GAMs) and 

Generalized Linear Mixed Models (GLMMs). 

The general approach to fitting the standardization models involves: 1) choosing the 

response variable, 2) choosing the error distribution and the link function, 3) selecting 

a set of appropriate explanatory variables, 4) extract the standardized time series, 5) 

producing and analyzing diagnostics to answer if the model is adequate and for 

selecting between alternative models. 

Within the sets of possible explanatory variables, the main effects usually explored and 

considered are 1) Year (primary time unit of interest), 2) Area and 3) Season. Other 

variables of interest that are commonly explored are 1) Gear characteristics (e.g., 

depth, bait, hook-type), 2) Vessel characteristics (e.g., size, technology, skipper 

experience) and 3) Environmental characteristics. Additional issues that need to be 

considered are if those explanatory variables are continuous vs. categorical, and the 

possible use of interaction terms in the model. 

 

2.2.4 What to do with the 0 catches 

Having datasets with zero (0) catches in some of the fishing sets is very common in 

fisheries data (Coelho, 2013). There are various reasons for the occurrence of such 

zeros, such as, 1) species not being targeted, 2) species having a patchy distribution, 

and 3) logbooks omissions. This means that the first step is to explore and analyze the 

data in order to understand the origin and quantity of zeros(Zuur et al., 2012). 
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Depending on the structure and quantity of zeros in the dataset, , the options are then 

to: 1) remove the zeros, 2) replace with a small constant, 3) use distributions that can 

account for zeros (e.g., Tweedie), 4) use a two-step process to model the zero and 

positive catches separately (e.g., delta or hurdle models) or 5) use zero-inflated models 

(for more extreme cases). This workshop concentrated on option 3, where we use the 

Tweedie distribution that can take into account the discrete and continuous features 

of such data, namely the discrete point of zeros as well as the continuous values for 

the non-zeros positive component of the data (see Annex 1). 

 

2.2.5 Selection of explanatory variables 

There are several options for the selection of explanatory variables within the models. 

The approach used in the workshop followed a stepwise approach, as recommended 

by Hosmer and Lemeshow (2000). In this approach, the univariate significance of each 

explanatory variable is determined by the Wald statistic and by the likelihood ratio 

tests, comparing each univariate model with the null model. The significant variables 

are then used to construct a simple effect multivariate GLM, with the non-significant 

variables (at the 5% level) eliminated consecutively from the model. At this stage, the 

variables that had been eliminated in the first step are further tested, in order to 

determine an eventual significance within the framework of a multivariate model. 

Once a final multivariate simple effects model is obtained, each pair of possible 1st 

degree interactions is tested, and are considered for inclusion in the final model if 

significant at the 1% level. 

In terms of the GLM assumptions regarding the explanatory variables, the assumption 

of linearity (in the continuous variables) with the linear predictor is assessed by 

creating and analyzing GAM plots. If evidence of non-linearity is present, then 

multivariate fractional polynomial transformations are carried out, and the 

transformed explanatory variables are used in the final models (as described by 

Royston and Altman, 1994). 

 

2.2.6 Model validation 

Models should be assessed by analyzing the residuals to determine visually if major 

problems are taking place, such as overdispersion problems, the presence of outliers 

or influential observations. In general, the deviance residuals should be used (Zuur et 

al., 2009). However, in the case of the Tweedie models the quantile residuals are used, 

as recommended by Dunn and Smyth (1996). 
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For each model, the values of the AIC - Akaike Information Criterion (Akaike, 1974), 

and the pseudo R2 - Nagelkerke coefficient of determination (Nagelkerke, 1991) are 

also calculated. Those are especially useful for model comparison in terms of 

goodness-of-fit and to choose between alternative models. 

 

2.3 Example of CPUE standardisation using a simulated dataset 

2.3.1 Descriptive analysis 

The data used in the workshop exercise was a simulated blue marlin (Makaira 

nigricans) CPUE obtained from a simulated fishery, to which a simulated swordfish 

(Xiphias gladius) was added. The idea was to include one main target species with very 

little occurrence of zeros (swordfish) and one bycatch species with a high occurrence 

of zeros (blue marlin). The data from the blue marlin component was built and used by 

Forrestal et al. (2019) in a simulation blind study on CPUE standardization. All analyses 

were performed in R version 3.6.1. (R Core Team, 2019). 

The simulated dataset contained information usually obtained from commercial 

logbooks, in this case from oceanic pelagic longline fisheries, to which some 

environmental variables were added (Table 2.1). 

 

Table 2.1. Example of the simulated dataset used. Each row represents one longline fishing 

set, where lat=latitude, long=longitude, SST = sea surface temperature, surface_DO = Dissolved 

oxygen at the surface, hbf = hooks between floats used as a proxy for depth/targeting, SWO = 

catch of swordfish in number, BUM = catch of blue marlin in number. 

 

 

After loading the dataset, the first step was to analyze and describe the data. There are 

multiple ways to achieve that, and during the workshop some ideas and options were 

discussed and provided. One possibility to start is to check if there are sufficient 

lat lon year month SST surface_DO light fleet hooks BUM bait hbf area SWO

1.5 -28.5 2000 1 27.94 4.53 4 1 750 0 2 3 5 8

3.5 -28.5 2000 1 27.71 4.61 2 1 1036 0 5 4 5 4

18.5 -49.5 2000 1 25.36 4.68 4 1 824 1 2 4 5 2

19.5 -50.5 2000 1 25.18 4.69 4 1 801 2 2 3 5 7

19.5 -46.5 2000 1 25 4.75 4 1 900 1 2 3 5 5

21.5 -68.5 2000 1 24.94 4.74 3 1 400 0 2 4 5 2

21.5 -67.5 2000 1 24.97 4.78 3 1 484 1 2 4 5 4

21.5 -67.5 2000 1 24.97 4.78 3 1 484 0 2 4 5 3

21.5 -66.5 2000 1 25.02 4.85 3 1 472 0 2 4 5 4

25.5 -88.5 2000 1 23.68 4.76 2 1 600 1 2 4 1 4

25.5 -75.5 2000 1 23.31 4.9 3 1 360 0 5 3 4 3

26.5 -87.5 2000 1 23.3 5.01 3 1 800 0 2 4 1 4

26.5 -86.5 2000 1 23.18 5.09 3 1 800 0 2 4 1 6
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datapoints for all the combinations of the various variables that could be incorporated 

in the models by using mosaic plots, with one example provided in Figure 2.1. 

 

Figure 2.1. Mosaic plot for describing the quantity of datapoints in the dataset, in this case for 

each combination of area along the various years. 

 

Using maps to evaluate the geographical distribution and extent of the data is also very 

useful. In the exercise, we provided examples on how to build effort distribution maps 

(Figure 2.2) and mean CPUE distribution maps (Figures 2.3 and 2.4). 
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Figure 2.2. Effort distribution map of the simulated pelagic longline dataset. 

 

Figure 2.3. Mean CPUE distribution map of the simulated pelagic longline data, in this case 

specifically for the bycatch species (BUM = blue marlin). 
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Figure 2.4. Mean CPUE distribution map of the simulated pelagic longline data, in this case 

specifically for the main target species (SWO = swordfish). 

 

It is then important to explore the shape of the distribution of the response variable 

that will be modeled, in this case the CPUEs of the target and bycatch species. Figures 

2.5 and 2.6 provide the examples specifically for the blue marlin and swordfish 

datasets. As expected from a bycatch species, the blue marlin data has a very high 

concentration of zeros, which is not the case of the swordfish as the main target 

species. 
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Figure 2.5. Shape of the distribution of the CPUE data for the blue marlin (BUM). 

 

Figure 2.6. Shape of the distribution of the CPUE data for swordfish (SWO). 

 

We can then look into the time series and trends of the nominal (i.e., fishery 

dependent) CPUEs, which are represented in Figures 2.7 and 2.8. 



18 
 

 

Figure 2.7. Time series of the nominal CPUE data from the blue marlin (BUM). The dots 

represent the mean nominal yearly CPUE and the error bars represent the standard error. 

 

Figure 2.8. Time series of the nominal CPUE data from the swordfish (SWO). The dots  

represent the mean nominal yearly CPUE and the error bars represent the standard error. 
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2.3.2 CPUE standardization model 

The case of blue marlin, a bycatch species with a high percentage of zeros (90.7% of 

the fishing sets) was the example provided for CPUE standardization modelling. 

The first step was to estimate the p-index of the Tweedie distribution that best fits the 

data (Figure 2.9). The p-index in this case was estimated at 1.155 and produced the 

distribution that is indicated in Figure 2.10. This distribution could account for 90.6% of 

zeros, which is a very good approximation of the actual zeros in the dataset (i.e., 

90.7%). 

 

Figure 2.9. Maximum likelihood estimation of the p-index value of the Tweedie distribution for 

the blue marlin CPUE data. 
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Figure 2.10. Tweedie distribution defined to model the blue marlin CPUE data. The point 

represents the mass of zeros (90.6%) and the line represents the continuous distribution for 

the non-zeros. 

 

The possible explanatory variables to model the blue marlin CPUE were tested in 

simple univariate models and then the following simple effects model using only 

categorical variables was created: 

BUM cpue ~ year + month + light + bait + hbf + area 

Note that hbf stands for “hooks-between-floats” and is used as a proxy for targeting 

based on the fishing gear depth. 

This preliminary first model had an AIC of 16517.7 and a pseudo R2 of 13.3%. The 

residuals are shown in Figure 2.11. 
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Figure 2.11. Residuals of the first simple effects model using only categorical variables for the 

blue marlin CPUE. 

 

The next step was to explore the incorporation of some continuous variables, in this 

case two environmental variables, namely Sea surface temperature (SST) and dissolved 

oxygen at the surface. Their shape is described in Figure 2.12, where especially for the 

dissolved oxygen there is a clear non-linear trend. 
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Figure 2.12. Shape of the continuous explanatory variables considered for incorporation in the 

blue marlin model, in this case sea surface temperature (SST) and dissolved oxygen at the 

surface (surface_DO) 

 

We then used multivariate fractional polynomials to transform the variables. For the 

SST only a scale transformation was performed, while for the dissolved oxygen 

polynomials transformations were used: 

SST: I((SST/10)^1) 

surface_DO: log((surface_DO/100))+I((surface_DO/100)^0.5) 

With those transformed variables a new model was created, which is represented 

below: 

BUMcpue ~ year + month + light + bait + hbf + area+ I((SST/10)^1) + 

log((surface_DO/100)) + I((surface_DO/100)^0.5 

This updated model had an AIC = 13413.9 and a pseudo R2 = 15.9%. In this particular 

case, the AIC is not comparable with the previous model using only categorical 

variables, as this model had less data (due to lack of environmental variables in some 

years of the dataset). However, the residuals of this updated model, plotted in Figure 

2.13, show an improvement compared to the previous model residuals. 
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Figure 2.13: Residuals of the updated model using categorical and continuous (environmental) 

variables transformed with fractional polynomials, for the blue marlin CPUE. 

 

Finally, the marginal means of the year effect were calculated, in order to provide the 

standardized CPUE series. A potential difficulty in extracting the year effect is that each 

explanatory variable will have multiple levels (for categorical variables) and values (for 

continuous variables) during each year (Maunder and Punt, 2004). In this case, the 

year effects are calculated as the predicted values averaged across all levels of all other 

variables. Those standardized CPUEs, both from the simpler model using only 

categorical variables and from the final model using categorical and continuous 

variables, are represented in Figure 2.14. 
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Figure 2.14. Nominal CPUE (black dots) and standardized CPUEs (lines) for the blue marlin 

CPUE dataset. 

 

2.4 Additional introductory notes 

Some additional notes with regards to recommendations for future work are 

presented later in Section 7 of this report. Here, we provide some additional 

introductory notes that are common to the methods used and important to introduce 

here. 

In terms of estimation of the year effect, the assumption made is that after removing 

all fishery-dependent variables (all explanatory variables used in the models), the 

remaining year effect will be proportional to species abundance, and therefore can be 

used as a proxy of species abundance in stock assessment models. Recent simulation 

work has been conducted, showing that it is possible to reconstruct the true 

underlying annual abundance trends with these methods (Forrestal et al., 2019). 

One important initial consideration for the analysis is the choice of distribution for the 

models, that should take into account the type and shape of the distribution of the 

data being modeled. For that reason, an initial descriptive analysis as introduced here 

is very important. A discrete distribution, such as the Poisson or Negative Binomial, can 

be appropriate if the catch is recorded and modelled in number of individuals (discrete 
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distribution), while a continuous distribution such as the Gamma is more appropriate if 

the data modeled is continuous, such as CPUE data (Maunder and Punt, 2004). 

This point is linked on how the effort is introduced in the models. Usually, the 

approach chosen is to use the effort included in the response variable, in the form of 

CPUE data, in which case using a continuous distribution can be appropriate. However, 

another possibility is to use the effort as an offset variable, in which case the response 

variable should be the catch in numbers or biomass (Maunder and Punt, 2004). As we 

have seen, the Tweedie distribution is a compound distribution that can model the 

discrete point of zeros and the continuous component for the non-zeros, which is a 

common feature of many CPUE datasets. 

Finally, another important point for the analysist to consider is model development 

and the selection of the explanatory variables. The approach introduced in this 

workshop follows the stepwise approach recommended by Hosmer and Lemeshow 

(2000) (see Section 2.2.5 for the procedure steps), but it is noted that there are now 

multiple packages available in statistical software that can conduct variable selection 

automatically (usually based on AIC). However, the more manual approach introduced 

here, that starts with univariate models, then builds a multivariate model, and finally 

tests for interactions, allows the analysist to better understand the process of variable 

selection and be fully aware of the decisions that are made. 
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3 CASE STUDY 1: NORWAY LOBSTER (Nephrops norvegicus) 

3.1 Introduction 

Norway lobster (Nephrops norvegicus) is distributed along the continental slope off the 

southwest (FU 28) and south (FU 29) Portuguese coast, at depths ranging from 200 to 

800 m. Its distribution is limited to muddy sediments with 10–100% silt and clay 

content, required to excavate burrows (Bell et al., 2013).  

The area of distribution of Norway lobster in these functional units (FUs), includes ICES 

rectangles 03E, 04E0 and 05E0 in FU 28 and rectangles 02E0, 02E1, 02E2 and 01E2 in 

FU 29 (Figure 3.1). Although FUs 28 and 29 are different stocklets, landing records are 

not differentiated by FU and are assessed together. 

 

Figure 3.1. Nephrops in FUs 28-29 (SW and S Portugal). Fishing grounds overlaying ICES 

statistical rectangles. 

 

Norway lobster is a very valuable and important resource for the demersal trawl 

fisheries operating in the region. Together with the deepwater rose shrimp 

(Parapenaeus longirostris), Norway lobster constitutes the main target species of the 

majority of the crustacean trawl fleet and is not generally caught as bycatch in other 
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fleets. These two species have a different but overlapping depth distribution: the 

deepwater rose shrimp occurs at the depth range of 100–350 meters whereas Norway 

lobster is distributed from 200 to 800 meters (Sobrino at al., 2005). The number of 

fishing trips directed to one species or to the other depends on the abundance of 

these species each year. 

The Portuguese trawl fleet comprises two components, namely the trawl fleet 

targeting demersal fish and the trawl fleet targeting crustaceans. The trawl fleet 

targeting demersal fish operates off the entire Portuguese coast while the trawl fleet 

directed to crustaceans operates mainly in Southwest and South Portugal and at 

deeper waters (≥ 200 m), where the crustacean species are more abundant. The fish 

trawlers are licensed to use a mesh size ≥ 65 mm and the crustacean trawlers are 

licensed for two different mesh sizes, 55 mm for catching shrimp and ≥ 70 mm for 

Norway lobster. Demersal fish trawlers that regularly land Nephrops, do in fact target 

this resource, which in terms of overall profit, represents a significant additional 

income. 

The number of trawlers targeting crustaceans has been fixed at 35 since the early 

1990s. However, in late 1990s, some vessels have been replaced by new ones, better 

equipped and more powerful, and the number of crustacean trawlers was then 

reduced to 30. In the last decade (2010s), the fishery in FUs 28 and 29 was mostly 

conducted by the Portuguese crustacean fleet composed by an average of 23 vessels 

(18 – 29 m of overall length and 220 – 450 kW) and up to 5 Spanish trawlers licensed 

for this fishery under a bilateral agreement. 

The fishery takes place throughout the year, with the highest landings usually being 

made in spring and summer. The main bycatch species are blue whiting, hake and 

anglerfish (Abad et al., 2007). Discards are considered negligible, based on the results 

obtained from the DCF discard sampling program onboard the Portuguese crustacean 

trawlers, since 2004. When occurring, discards of Nephrops are not related to size but 

mainly related to quality (i.e., broken or soft shells). 

Considered as an ICES data-limited category 3 stock (ICES, 2015), the advice for this 

stock has been based on the trends of a standardized CPUE, used as a biomass index. 

The effort estimated using this standardized CPUE has been used as a measure of 

fishing pressure. The CPUE standardization model had only considered the positive 

catches of Nephrops, based on the assumption that this is a target fishery. A GLM with 

Gamma distribution and log link was used with the following predictor factors: year, 

month, depth interval (100 – 400 m, 400 – 800 m, 800 – 1600 m), log catch classes of 

deepwater rose shrimp (corresponding to low and high catches), proportion of 

Nephrops in the total catch of crustaceans (<25%, ≥25%) and vessel category 

(categories A, B and C, based on their productivity compared to a reference vessel). 
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The classes of rose shrimp log catches and the classes of proportion of Nephrops were 

used as target fishing proxies. 

For this workshop, an alternative to the current model standardization procedure was 

explored, taking into account also the null catches of Nephrops. 

 

3.2 Exploratory data analysis 

The data used in the model included daily catches from logbooks linked to VMS fishing 

positions, for 44 crustacean trawlers in the period 1998 – 2019. Trawling activity was 

assigned to VMS records based on the speed profile of the vessels. The time difference 

between two contiguous VMS records was assigned to the second record as fishing 

time. Records with duration greater than two hours were removed. Depth and subarea 

were identified by superimposing the VMS fishing records over a depth layer and over 

the fishing grounds represented in Figure 3.1. Daily catches of each vessel were 

distributed by the daily VMS records of the vessel weighted by the fishing time of each 

record. 

The number of records available for the analysis (Figure 3.2) was not evenly distributed 

over the years, with lower number of records in the period 1998-2001 and in 2004, 

when information available was provided by the GeoCrust project (Afonso-Dias, 2002) 

for some of the vessels, with the addition of extra data in 2001 and 2004. Over the 

months, the records were almost evenly distributed with the exception for January, 

due to a fishing closure set experimentally in 2003 and permanently since 2005 

(Portaria no. 1557-A/2002, 30th December2002; Portaria no. 1142, 13th September 

2004; Portaria no. 43/2006, of 12th January 2006), and in February in 2005 and 2016 

when the seasonal closure was extended for one month (Portaria no. 8-A/2016, of 28th 

January 2016). Nephrops fishing was also restricted in the period September to mid-

November in the years 2014-2017 due to quota reduction resulting from the 

application of the Recovery Plan for Southern Hake and Iberian Norway lobster stocks 

(Council Regulation (EC) no. 2166/2005). In terms of subareas (i.e., fishing grounds) 

and depth intervals there is also some asymmetry on the information available in 

result of the fishing strategy, size and depth of the fishing grounds, and target species 

distribution, with less records in Arrifana and ZEE and in depths deeper than 800 m 

(Figure 3.2). To note that in this new approach the depth intervals considered in the 

analysis were narrower than those in the previous CPUE model. 

 



30 
 

 

 

 

Figure 3.2. Distribution of the number of records through the time series by month (top), 

subarea (middle) and depth classes (bottom). 

An exploratory data analysis was conducted to evaluate the proportion of zero catches 

of Nephrops in the data set and its behaviour against some of the possible explanatory 
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variables, namely subarea and depth interval (Figure 3.3). Lower proportion of zeros 

(and therefore, higher proportions of positive catches) were found, in depths between 

400 m and 800 m and in subareas Sines, Sagres, Sagres-Portimão (sagpor) and 

Beirinha. 

 

 
Figure 3.3. Proportion of zero catches of Nephrops by year in each subarea (upper panel) and 

depth interval (lower panel). 
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3.3 Model fitting and diagnostics 

Generalized linear models were fitted to the data, considering the Nephrops CPUE as 

the response variable. The Nephrops CPUE is a continuous variable with a discrete 

mass of zeros, therefore a Tweedie distribution with a log link was assumed (Dunn, 

2009). The power-index parameter (p) was determined using the package ‘tweedie’.  

Initially, univariate models were applied for each explanatory variable candidate. The 

same categorical variables used for the previous model were tested, with some new 

formulations explained next, and adding a new variable, the subarea. 

Depth was tested either as a continuous variable transformed with multivariate 

fractional polynomials (MFP), using package ‘mfp’ (Benner, 2015), or as a factor but 

with more detailed levels than in the previous model for positive values, i.e. [100, 200[, 

[200, 400[, [400, 600[, 600, 800], [800, 1600] m. Details on the polynomial terms 

obtained are presented in the results section. 

The factor vessel (cfr) was tested with all levels (44 vessels) and grouped in 3 levels as 

before. Another option was to include the vessel as a random variable, but there was 

no time during the workshop to test this approach. 

Considering that one of the proxies for target fishing, the proportion of Nephrops in 

the total catch of crustaceans, was not truly independent from the response variable, a 

cluster analysis was performed to identify clusters of target fishing. The categorical 

variable cluster replaced in the final model the referred predictor and the log catch 

classes of deepwater rose shrimp, also a proxy for target fishing used in the initial 

model. A non-hierarchical clustering technique, CLARA (Clustering LARge Applications) 

based on the k-medoid approach (Kaufman and Rousseeuw, 1990; Struyf et al., 1996), 

was applied to the catch composition matrix, using the ‘cluster’ package (Maechler et 

al., 2019). The matrix contained the proportion in weight per hour of the five main 

crustacean species caught by the fishery in each record in relation to the total weight 

per hour of crustaceans. The species considered were: Norway lobster, deepwater rose 

shrimp, blue and red shrimp (Aristeus antennatus), giant red shrimp (Aristaeomorpha 

foliacea) and scarlet shrimp (Plesiopenaeus edwardsianus). The CLARA analysis was 

based on 100 data samples, each comprising 1000 records. The optimal number of k 

clusters was selected by iterative maximization of the Average Silhouette Width (ASW). 

The outcomes of the CLARA analysis are presented in the results section of this report. 

All significant variables (      ) were retained for a GLM with multiple explanatory 

variables. The best model was selected based on the explained deviance, the Akaike 

Information Criterion (AIC) and residual diagnostics. The mean estimates of the 

standardized CPUE of Nephrops from each model were obtained with least-squares 

means (Lenth, 2016). 
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3.4 Results and Discussion 

3.4.1 Extra analysis on the exploratory variables 

3.4.1.1 Target fishing 

In the CLARA analysis used to identify clusters of target fishing, although the highest 

Average Silhouette Width (ASW) was obtained for k = 2 clusters (ASW = 0.62), it was 

concluded that this number of clusters could be limitative to describe the target 

fishing. Therefore, the scenario using k = 4, the second largest value obtained (ASW = 

0.57), was also considered (Figure 3.4). Figure 3.5 shows the silhouette plot for these 

two cases.  

 

Figure 3.4. Average Silhouette Width (ASW) obtained for different number of clusters of the 

target fishing in the crustacean trawl fishery catching Nephrops. 

 

  
Figure 3.5. Silhouette plot for two (left) and four clusters (right). 
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Figure 3.6. Proportion in weight of the five crustacean species by cluster for two clusters 

(upper panel), and four clusters (lower panel). ARA: blue and red shrimp (Aristeus antennatus), 

ARS: giant red shrimp (Aristaeomorpha foliacea), DPS: deepwater rose shrimp (Parapenaeus 

longirostris), NEP: Norway lobster (Nephrops norvegicus), SSH: scarlet shrimp (Plesiopenaeus 

edwardsianus). 
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For the scenario k = 2, the cluster characterization with the species proportion by year 

(Figure 3.6, upper panel) led to identify one cluster (cluster 2) with a high proportion of 

deepwater rose shrimp (95%) and the other (cluster 1) with a higher diversity of 

species, being Nephrops the dominant one (67%). For the scenario k = 4 (Figure 3.5, 

lower panel), apart from a deepwater rose shrimp cluster (100%, cluster 3), one can be 

considered a Nephrops cluster (86%, cluster 4), another with a mixture of those two 

main species but with higher proportion of deepwater rose shrimp (66%, cluster 1) and 

a fourth one (cluster 2) containing more deep-water species like blue and red shrimp 

(56%) and scarlet shrimp (11%). Clusters 3 and 4, targeting rose shrimp or Nephrops 

each, have silhouette coefficients greater than 0.50 (Figure 3.5), thus considered as 

having a reasonable to strong structure (Kaufman and Rousseew, 1990). Also, the 

different depth ranges associated to each cluster seem to be better explained in the 

k = 4 scenario and result on a better segregation of the target species (Figure 3.7). 

 

 

 

Figure 3.7. Depth range by cluster for k = 2 clusters (upper panel) and k = 4 clusters (lower 

panel). 
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3.4.1.2 Depth 

To include depth as a continuous variable in the GLM, a transformation was conducted 

with MFP, as linear models assume explanatory variables to be linearly associated with 

the response variable and depth has a non-linear behaviour (Figure 3.8). The MFP 

which best predicted the depth variable was:  

                                 . 

 

 

Figure 3.8. Variability of Nephrops CPUE with depth 

 

3.4.2 Models results 

3.4.2.1 Estimation of power parameter 

The p-index was estimated by maximizing the profile log-likelihood across the grid 

values of p (Figure 3.9) in the range of 1 < p < 2. The estimated value was p = 1.517. 
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Figure 3.9. Value of log-likelihood function (L) changing the power-parameter (p) of the 

Tweedie model for Nephrops CPUE standardization (p-index = 1.517, phi-method = ‘mle’) 

 

3.4.2.2 Model fitting 

Modelling was performed with all significant variables. Table 3.1 summarizes the 

results of different combinations of predictors tested during the workshop. Taking into 

account the lower number of records for the years 1998-2000, some models were 

tested with a shorter time series (2001-2019). As the differences were very small, 

these models were discarded (represented with grey background in Table 3.1). The 

variables year, month and subarea were included in all models. 

 

Table 3.1. Summary of GLM models: explained deviances and value of the Akaike Information 

Criterion (AIC). Models using only years 2001-2019 with grey background. 

 

 

Model name year year month subarea depth (pol) depth.class1 clstr_k2 clstr_k4 cfr (44 lvl) cfr (3lvl) Expl dev % AIC

Mod0.k2 1998-2019 8.2% 5.6% 5.9% 1.6% 18.2% 39.5% 768,031.7

Mod01.k2 2001-2019 7.8% 5.6% 5.9% 1.6% 18.3% 39.2% 766,953.2

Mod0.k4 1998-2019 8.2% 5.6% 5.9% 0.5% 32.7% 52.9% 719,185.4

Mod01.k4 2001-2019 8.2% 5.6% 5.9% 0.5% 32.6% 52.8% 718,447.4

Mod1.k2 1998-2019 8.2% 5.6% 5.9% 18.2% 37.9% 773,278.4

Mod1.k4 1998-2019 8.2% 5.6% 5.9% 32.7% 52.4% 721,113.8

Mod2.k2 1998-2019 8.2% 5.6% 5.9% 2.4% 16.8% 38.9% 769,940.1

Mod2.k4 1998-2019 8.2% 5.6% 5.9% 2.4% 30.6% 52.7% 719,966.4

Mod3.k2 1998-2019 8.2% 5.6% 5.9% 3.3% 16.5% 1.7% 41.1% 762,452.6

Mod3.k2.cat 1998-2019 8.2% 5.6% 5.9% 3.3% 16.5% 1.2% 40.6% 764,081.3

Mod3.k4 1998-2019 8.2% 5.6% 5.9% 3.3% 29.9% 1.2% 54.1% 714,462.9

Mod3.k4.cat 1998-2019 8.2% 5.6% 5.9% 3.3% 29.9% 0.6% 53.5% 716,749.3

Mod3.1.k4 2001-2019 7.8% 5.6% 5.9% 3.3% 30.0% 1.2% 53.9% 713,730.2

Mod3.1.k4.cat 2001-2019 7.8% 5.6% 5.9% 3.3% 30.0% 0.6% 53.3% 716,020.5

Explanatory Variables
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The best models were obtained with depth as continuous variable and target fishing 

explained by 4 clusters. The variable cluster is the most important of the explanatory 

variables. The CPUE year trends obtained for the models with higher explained 

deviance and lower AIC (models Mod3.k4 and Mod3.k4.cat) are plotted together with 

nominal CPUE trend in Figure 3.10, for comparison. Mod3.k4 (with 44-level vessel 

factor) has a slightly higher explained deviance and wider confidence limits than 

Mod3.k4.cat (with 3-level vessel factor) with a loss of higher number of degrees of 

freedom. Details from the model Mod3.k4 and Mod3.k4.cat are presented in Table 3.2 

and Figure 3.11. 

 

 

Figure 3.10. Standardized CPUE trends for the best GLM models compared to nominal CPUE of 

Nephrops in FU 28-29, in the period 1998-2019. Confidence intervals represented in grey. 
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Table 3.2. Deviance tables from models Mod3.k4 (upper table) and Mod3.k4.cat (lower table). 

 

  

Mod3.k4 Df Deviance Resid. Df Resid. Dev F Expl Dev

NULL 193318 702962

year 21 57917 193297 645045 1492.1 8.2%

month 11 39102 193286 605943 1923.14 5.6%

subarea 7 41510 193279 564433 3208.2 5.9%

I((depth/1000)^2) 1 410 193278 564023 221.87 0.1%

I((depth/1000)^3) 1 22803 193277 541220 12336.7 3.2%

clstr4 3 209996 193274 331224 37870.2 29.9%

cfr 43 8477 193231 322747 106.65 1.2%

AICtweedie = 714462.9 54.1%

Mod3.k4.cat Df Deviance Resid. Df Resid. Dev F Expl Dev

NULL 193318 702962

year 21 57917 193297 645045 1444.01 8.2%

month 11 39102 193286 605943 1861.16 5.6%

subarea 7 41510 193279 564433 3104.82 5.9%

I((depth/1000)^2) 1 410 193278 564023 214.72 0.1%

I((depth/1000)^3) 1 22803 193277 541220 11939.1 3.2%

clstr4 3 209996 193274 331224 36649.8 29.9%

cfr_cat 2 4320 193272 326904 1130.82 0.6%

AICtweedie = 716749.3 53.5%
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Figure 3.11. Mod3.k4 (upper panel) and Mod3.k4.cat (lower panel) residuals diagnostics. 

 

3.5 Conclusions and Recommendations 

The GLM assuming a Tweedie distribution with a log-link seems to be adequate to 

explain the Nephrops CPUE trends, considering also the species spatial and depth 

distribution. Although Mod3.k4 provided a better fit, taking into account the 

complexity of the model (considering 44 different vessels) and the aim of standardized 

CPUE series, i.e. to be used in the assessment of Nephrops FU 28-29, it was concluded 
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that the best candidate model to explain the trend of Nephrops CPUE was the 

Mod3.k4.cat, although with slight worst fitting results than Mod3.k4. Nevertheless, as 

an alternative to Mod3.k4 it was suggested, as future work, that this model could be 

improved, using mixed effects models (e.g., GLMM or GAMM) with the vessel as a 

random effect, avoiding the loss of degrees of freedom. The further development of 

this work was presented to the ICES Benchmark Workshop on MSY Advice using SPiCT 

(WKMSYSPiCT) (ICES, 2021) and the final model was considered for the assessment of 

the Nephrops FU 28-29 stock under the Working Group for the Bay of Biscay and the 

Iberian Waters Ecoregion (WGBIE) in 2021. 

 

3.6 References 

Abad, E., Artetxe, I., Cardador, F., Castro, J., Duarte, R., García, D., Hernández, C., 

Marín, M., Murta, A., Punzón, A., Quincoces, I., Santurtún, M., Silva, C., Silva, L. 2007. 

Identification and segmentation of mixed-species fisheries operating in the Atlantic 

Iberian Peninsula waters (IBERMIX). Final Report. Contract Ref.: FISH/2004/03-33. 

Afonso-Dias, M., Simões J.M., Pinto, C., Sousa, P. 2002. Use of Satellite GPS data to 

map effort and landings of the Portuguese crustacean fleet (GeoCrust). Final Report 

EC-DGXIV/STUDY/99/059. 

Bell, M.C., Tuck, I., Dobby, H. 2013. Nephrops Species. In: Lobsters: Biology, 

Management, Aquaculture and Fisheries: 357-413. John Wiley & Sons, Ltd. 

Benner, A. 2015. mfp: Multivariable Fractional Polynomials. R package version 1.5.2. 

https://CRAN.R-project.org/package=mfp 

Dunn, P.K. 2017. Tweedie: Evaluation of Tweedie exponential family models. R package 

version 2.3. 

Forrestal, F.C., Schirripa, M., Goodyear, C.P., Arrizabalaga, H., Babcock, E.A., Coelho, R., 

Ingram, W., Lauretta, M., Ortiz, M., Sharma, R., Walter, J. 2019. Testing robustness of 

CPUE standardization and inclusion of environmental variables with simulated longline 

catch datasets. Fisheries Research, 210: 1-13. 

ICES. 2015. Report of the Fifth Workshop on the Development of Quantitative 

Assessment Methodologies based on Life-history Traits, Exploitation Characteristics 

and other Relevant Parameters for Data-limited Stocks (WKLIFE V), 5–9 October 2015, 

Lisbon, Portugal. ICES CM 2015/ACOM:56. 157 pp. 

ICES. 2021. Benchmark Workshop on the development of MSY advice for category 3 

stocks using Sur- plus Production Model in Continuous Time; SPiCT (WKMSYSPiCT). 

ICES Scientific Reports. 3:20. 317 pp. https://doi.org/10.17895/ices.pub.7919 



42 
 

Kaufman, L., Rousseeuw, P.J. 1990. Finding Groups in Data: An Introduction to Cluster 

Analysis. John Wiley, New York. 

Lenth, R.V. 2016. Least-squares means: the R package lsmeans. Journal of Statistical 

Software, 69 (1), 1–33. 

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K. 2019. cluster: Cluster 

Analysis Basics and Extensions. R package version 2.1.0. 

R Core Team. 2020. R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. 

Shono, H. 2008. Application of the Tweedie distribution to zero-catch data in CPUE 

analysis. Fisheries Research, 93: 154-162. 

Sobrino, I., Silva, C., Sbrana, M., Kapiris, K. 2005. A review of the biology and fisheries 

of the deep water rose shrimp, Parapenaeus longirostris, in European Atlantic and 

Mediterranean waters (Decapoda, Dendrobranchiata, Penaeidae). Crustaceana, 78 

(10): 1153-1184. https://doi.org/10.1163/156854005775903564 

Struyf, A., Hubertt, M., Rousseeuw, P.J. 1996. Clustering in an object-oriented 

environment. Journal of Statistical Software, 1(4): 1–30. 

Venables, W.N., Ripley, B.D. 2002. Modern Applied Statistics with S, Fourth edition. 

Springer, New York. ISBN 0-387-95457-0, http://www.stats.ox.ac.uk/pub/MASS4/. 

 



43 
 

4 CASE STUDY 2: BLACK-BELLIED ANGLERFISH (Lophius 
budegassa) 

4.1 Introduction 

The white anglerfish Lophius piscatorius Linnaeus, 1758 and the black-bellied 

anglerfish Lophius budegassa Spinola, 1807 have traditionally been caught by two 

fleets in Portugal mainland: the bottom otter trawl and the polyvalent, which 

represented 11-38% and 62-89% of the national landings of both species from 1984 to 

2019, respectively. The polyvalent fleet refers to multi-gear/multi-species fisheries, 

and involves a large group of vessels, from various sizes, usually licensed to operate 

with more than one fishing gear (most commonly gill and trammel nets, longlines and 

traps), that can be deployed in the same trip, targeting different species. Given the 

nature of these fisheries, selecting the species to target depends not only on species 

abundance, but also on other factors such as the area of exploitation, market prices, 

IVQ - individual vessel quotas (to hake) or season (among others) (Moura et al., 2016). 

As a consequence, landing profiles are quite diverse within and among vessels, since 

their activity is ruled by a multitude of factors that are measured in order to maximize 

fishermen profit (Christensen and Raakjaer, 2006). 

Within the polyvalent fleet, anglerfish are mostly caught by trammel nets (75-90% of 

annual national landings of the polyvalent fleet recorded in logbooks), all along the 

Portuguese coast and target fisheries are known to occur. This section presents a CPUE 

model for the black-bellied anglerfish in Portuguese waters using data for the trammel 

net fisheries reported in logbooks. This fishery represents an average of 72% and 22% 

of the national and total international landings of the stock, respectively. 

 

4.2 Exploratory data analysis 

4.2.1 Logbook data  

Logbook data (2002-2019) was provided by Direcção Geral de Recursos Naturais, 

Segurança e Serviços Marítimos (DGRM), the national fisheries administration, under 

established protocols. Logbook reports have, in theory, more precise information on 

landings, with catches being reported by day of catch, ICES rectangles (or geographical 

coordinates in case of electronic logbooks), and fishing gear.  Hauls conducted with 

trammel nets and with reported catches of anglerfish species (irrespective of the 

species reported) were selected from the overall dataset. The reason to select only 

hauls with anglerfish catches and not all hauls assigned to trammel nets is related to 

the polyvalent nature of this fleet: vessels can deploy trammel nets with different 

mesh sizes or at fishing grounds other than those usually used to target anglerfish. By 
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including these hauls, different fisheries would be considered, and “false zeros” (hauls 

without catches of anglerfish as a result, for example, of fishing operations outside 

distribution area of the species or inadequate gear or mesh size) would be included in 

the analysis. As a consequence, the analysis does not include the “true zeros”, i.e., 

hauls where anglerfish could be potentially caught but were not present. It should be 

remarked that, in the case of target fisheries to anglerfish, the effect of not considering 

the “true zeros” is likely low since fishermen will not opt by this fishery when yields are 

low. Future work will be developed in order to consider targeting effects and this issue 

may be minimized. 

Due to the possible misidentification of Lophius species within logbook data, the 

proportion of each species on market samples were used to estimate a catch value for 

each Lophius species by year and by landing port. It was assumed that the landing port 

nearest to the fishing ground reported (ICES rectangle) could inform on species 

composition of the catch. Such approach led to the occurrence of zeros in the data, 

i.e., when landings in a particular landing port are attributed to a single species. 

 

4.2.2 Data cleaning and selection 

Abnormal values in the number of hauls or reported catches were identified and 

removed from the dataset.  

After inspection of the data, it was decided to exclude data reported for the northern 

area. Despite having important fishing grounds for Lophius spp., most of the estimated 

catches in this area are attributed to L. piscatorius. Lophius budegassa has low levels of 

catches and CPUE in the northern area (ICES statistical rectangles 08, 09, 10, 11 and 12; 

Figures 4.1 and 4.2). 
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Figure 4.1. PT-GTR total catches of Lophius budegassa by ICES rectangle as reported in 

logbooks (2008-2019). 

 

Figure 4.2. Number of hauls with catches of Lophius budegassa (logbook data from 2012-

2019). 
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Due to misreporting and poor quality of the report, only data from 2008 onwards were 

considered for modelling. Months from January and February were also excluded from 

the dataset due to the prohibition of Lophius landings (national regulation: Portaria n.º 

315/2011 - Diário da República n.º 249/2011, Série I de 2011-12-29). 

Since catches by species are estimated based on the proportion of each species in the 

nearest landing port, hauls with zero catches of L. budegassa (see last paragraph of 

section 4.2.1.) were removed, as those would only correspond to a fraction of the 

“true zeros”. 

 

4.2.3 Variables selected for analysis 

The “Duration” field available in logbooks was considered not reliable. Therefore, CPUE 

was estimated as the catches of L. budegassa by haul. The following variables were 

also selected for modelling: Year, Month and Area (ICES rectangle). 

Observer data collected during a Data Collection Framework pilot study developed to 

collect information on the trammel net fishery targeting anglerfish in Portuguese 

waters, showed that 92% of the hauls targeting anglerfish (Lophius spp.) returned 

landings >50% in weight of these species (Moura et al., 2016). So, a new variable 

(binary) was added to the dataset, specifying if the haul was likely to have targeted 

anglerfish (Lophius spp.) or not. Target hauls were those with catches of Lophius spp. 

≥0.4 of the total catch.  

Table 4.1. summarizes the information selected for modelling, by year. The variation of 

catches by year, month, ICES rectangle and target is presented in Figure 4.3. 
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Table 4.1. Summary of the information selected for modelling. ANK, Lophius budegassa; GTR, 

trammel net hauls. 

Year Hauls Vessels Areas Months Target hauls Proportion of ANK catches (GTR) 

 n n n n n All hauls Target hauls 

2008 670 47 10 8 297 0.63 0.49 

2009 627 40 8 6 257 0.54 0.44 

2010 1270 39 11 8 499 1.00 0.87 

2011 878 38 8 6 363 0.98 0.91 

2012 2392 50 13 10 1330 0.99 0.94 

2013 2073 45 12 10 1212 0.99 0.94 

2014 2310 50 12 10 1336 1.00 0.91 

2015 2325 60 13 10 1467 0.99 0.92 

2016 1874 53 13 10 1356 1.00 0.93 

2017 2263 50 13 10 1547 0.98 0.89 

2018 1637 39 13 10 1114 0.99 0.92 

2019 1125 34 13 10 696 1.00 0.90 

 

 

 

Figure 4.3. CPUE variation by levels of each factor selected for analysis. 
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4.3 Model fitting and diagnostics 

Initial models were tested using a GLM, using the same variables as the final model: 

Year, Month, Area, Vessel and Target. In addition, initial analyses tested models with 

data from different groups of vessels, selected by applying thresholds to the frequency 

of anglerfish catches in each year and to the persistency of catches along the years. 

Such methodology was followed to ensure that the variable Vessel was informative 

and adequate to be included in the model since several vessels did not exhibit a 

persistent pattern in anglerfish catches neither over the years nor along the year. 

To overcome this deficiency of data, it was suggested to apply a generalized linear 

mixed model (GLMM), with the variable Vessel as random variable. GLMMs combine 

the properties of linear mixed models (which incorporate random effects) and 

generalized linear models (which handle non normal data by using link functions and 

exponential family) (Bolker et al., 2009). 

The following model was fitted to the response variable CPUE (catches of L. budegassa 

by haul): 

GLMM: (log(ANK) ~ Year + Month + Area + Target, random=Vessel) 

considering as independent variables: Year, Month, Area (ICES statistical rectangle) 

and Target. The vessel identity (Vessel) was considered as the random variable, due to 

the high number of levels and relatively little data on most levels. 

All the independent variables were modelled as categorical variables. Modelling was 

conducted in R software, using package “glmmTMB” (Brooks et al., 2017). Lophius 

budegassa catch data was log transformed and modelled assuming the gaussian 

probability distribution. Tests with a gamma distribution and log link function (and no 

transformation of the variable CPUE) were also conducted. Model´s adequacy was 

checked based on residual analysis. The package “effects” (Fox and Weisberg, 2019) 

was used to visualize graphical effects of the predictors included in the model. 

Estimated marginal means for the variable year were extracted using package 

“emmeans” (Lenth, 2020).  

 

4.4 Results and Discussion 

Residual analyses showed better fits with a gaussian distribution after log transforming 

the CPUE data instead of a gamma distribution (Figure 4.4). Results will be presented 

for the first condition.  
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Figure 4.4. Standardized CPUE index (kg.haul-1) for the Portuguese trammel net fishery (2008-

2019):  Model residuals. Top: fitted vs residuals; middle: residuals distribution plot; bottom: Q-

Q plot. Left: model with gaussian distribution (and log transformation of the CPUE); right: 

model with gamma distribution and log link function. 

 

All variables were significant in the GLMM model. Effects of each variable are 

presented in Figure 4.5. Standardized values are presented in Table 4.2 and Figure 4.6. 

As shown above, model residuals suggest a relatively good fit (see also Figure 4.7). 

Figure 4.5. Effects of the variables Year, Month, Area and Target. 
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Table 4.2. Standardized CPUE index of L. budegassa and respective standard error (se) for the 

Portuguese trammel net fishery (2008-2019). 

Year CPUE 

(kg/haul) 

se 

2008 11.54 0.91 

2009 15.34 1.19 

2010 11.26 0.83 

2011 18.45 1.41 

2012 21.12 1.47 

2013 21.59 1.51 

2014 20.80 1.44 

2015 15.82 1.09 

2016 22.55 1.57 

2017 23.80 1.64 

2018 18.16 1.27 

2019 17.95 1.29 

 

  
Figure 4.6. Standardized CPUE index (kg.haul-1) of L. budegassa for the Portuguese trammel 

net fishery (2008 – 2019). Left: model results with standard errors (shaded grey area). Right: 

comparison between the standardized CPUE (black solid line) and the non-standardized series 

(red solid line). 
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Figure 4.7. Standardized CPUE index (kg.haul-1) for the Portuguese trammel net fishery from 

(2008-2019): fitted vs observed values. 

 

4.5 Conclusions and Recommendations 

The CPUE trajectory obtained for the trammel net fleet shows an increasing trend 

(with fluctuations) from 2010 to 2016-2018, similarly to the trends from the 

commercial series for the Portuguese trawl fleets (Figure 4.8).  

 

 

Figure 4.8. Non-standardized CPUE for the Portuguese trawl fleet targeting crustaceans (left; 

I_PT.crust.tr; 1989-2019), Portuguese trawl fleet targeting fish (middle; I_PT.fish.OTB; 1989-

2019) and standardized CPUE for the Portuguese trammel net fishery targeting anglerfish 

(right; I_PT.GTR; 2008-2019). CPUE values in kg.h-1 and kg.haul-1 for the trawl and trammel 

net fleets, respectively.  

 

Despite being the most abundant Lophius species in Portuguese landings, L. budegassa 

is landed together with L. piscatorius. It is recognized that an improvement in landings 

assignment to species denominations has occurred in the last couple of years, but such 
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success cannot be attributed, at the moment, to all landing ports. It should thus be 

remarked that a correct identification of species in landings is essential, especially for 

species whose assessment relies on fisheries dependent data, as the case of L. 

budegassa.  

Results from this study will be presented to the ICES Benchmark Workshop on MSY 

Advice using SPiCT (WKMSYSPiCT). This work will be further developed considering 

conclusions from WKMSYSPiCT and to better accommodate issues related to 

limitations of the data and targeting effects. The knowledge achieved for this stock will 

be extended for L. piscatorius which is also yearly assessed by ICES.  
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5 CASE STUDY 3: CHUB MACKEREL (SCOMBER COLIAS) 
DISCARDS 

5.1 Introduction 

The extent and patterns for discarding is determined by a combination of regulations, 

environmental conditions, fishers’ preferences and market forces. The effect and 

relative importance of these factors will vary for different species, vessels, métiers and 

fleets and will fluctuate over time (Catchpole et al., 2011). 

The estimation of discards is essential for assessing the full impact of fisheries upon 

fish population and upon the ecosystem in which they operate (Borges et al., 2005). 

Because discarding can be a substantial component of the fishing mortality, it is 

important to take it into account for the stock assessment. Discards’ information can 

also be used in fisheries management, e.g., for evaluating conservation measures or 

for identifying the characteristics and behaviour of the fishing fleets. 

Discard observer programs are an important key to obtain information on species 

abundance and distribution, particularly concerning non-commercial species and it 

may also provide valuable biological information on geographical areas and wide 

temporal trends. 

The objective of the Portuguese onboard sampling program is to estimate the 

composition, volume, lengths and age of catches (landings + discards) taken by the 

Portuguese bottom otter trawl fleet (OTB) operating in the Portuguese area of ICES 

Division 27.9.a. This fleet is generally engaged in mixed fisheries, where a variety of 

species contribute to the output of the fishery. These species differ in habitat 

requirements and in their seasonal migration pattern, hence the species composition 

of catches will vary in space and time (Poos et al., 2010). Consequently, also discard 

patterns can be highly variable due to changing economic, environmental and social 

factors (Catchpole et al., 2005). Knowledge on the retained and discarded catch 

compositions of a fishery and how these vary spatially, temporally and among different 

fishing operations is then necessary for identifying the potential impacts of fishing on 

stocks assessment and ecosystems (Gray et al., 2005). 

Discards of Scomber colias are mainly related to market motives (volume vs 

commercial value) rather than regulatory motives (e.g., minimum length of reference 

for landing) (Fernandes et al., 2015). This fact is reflected in the irregular discard 

pattern of the species occurrence and volume observed between years and areas. For 

these reasons, discard estimates using the routine design-based discard raising 

algorithm (Jardim and Fernandes, 2013) are only provided when the frequency of 

occurrence of the species in the sampled hauls is above 30%. Also, the large variability 

of discarded volumes between hauls/trips, that may be linked to several factors (e.g. 
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area, species price, etc), may result in biased estimates. The high proportions of zeros 

in the discards (more than 30%) of this species in several years creates a difficulty in 

obtaining precise overall discard rates, possibly due to the negative relation observed 

between frequency of occurrence and coefficient of variation estimates (Fernandes et 

al., 2021). 

In this work, it is presented an exploratory analysis of the relationship between 

discards per-unit-effort (DPUE) and several technical and environmental variables in 

order to obtain standardized series of DPUEs. The goal of this work is to obtain 

standardized discard estimates to be used to estimate annual discards with a model-

based raising procedure. The modelled and observed discards are compared  and the 

differences in the annual discards obtained from the design- and model-based 

approaches are evaluated. 

 

5.2 Exploratory data analysis 

5.2.1 Data 

The analysis is performed for the period 2004-2019 using data collected by the 

Portuguese Onboard Sampling Programme (PNAB/EU DCF) and the sales records 

information provided by the Portuguese Administration (DGRM). This program uses a 

stratified random sampling and the vessel selection, with fleet region and quarter as 

strata, is based on an opportunistic sampling of cooperative commercial vessels. The 

bottom otter trawl fleet (OTB_DEF) is the selected fleet of this study. The sampling 

protocol used in the onboard sampling is summarized. Observers are deployed in a 

fishing trip to sample hauls selected systematically – either odd or even hauls are 

sampled after a random start. On each selected haul, observers take a sample from the 

catch, sort the specimens into retained and discarded fractions according to the crew’s 

criteria, do the species identification and record the weight and length composition. 

Concurrently, observers also collect auxiliary fishery-related information such as effort, 

geographical and environmental data. From 2004 to 2010 the onboard sampling 

protocol suffered only minor changes and adaptations but from 2011 onwards the size 

of the catch samples was doubled (from 1 to 2 boxes of catch) and the within-trip 

selection of hauls was standardized to “at-least every other haul”, while before 2011 

all possible hauls were sampled. 

The case-study focused on Scomber colias (VMA) which can be occasionally discarded 

in the OTB_DEF. Scomber colias is a species with an irregular discard pattern both 

because it is not frequently discarded in some of the sampled years (<30%) and some 

of the haul/trip occurrences may present very high discard weights. Table 5.1 

summarizes the information on the sampling effort including the number of sampled 
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trips, number of sampled hauls, hauls with the presence of the species in the catch and 

in each sampled fraction (landings and discards), along with the frequency of 

occurrence in the discards of sampled hauls, in the period 2004-2019 (Table 5.1). 

 

Table 5.1. Sampling effort information for the OTB_DEF fishery, with the number of sampled 

trips, hauls and with the presence of Scomber colias in the catch and in each fraction, and the 

frequency of occurrence in discards, for the period 2004-2019. 

Year Nb Trips 
Nb Hauls 
sampled 

Nb Haul with 
species 

Nb Hauls 
with species 

landings 

Nb Hauls with 
species 
discards 

Frequency of 
occurrence in 
discards (%) 

2004 24 125 88 59 47 38 

2005 39 159 127 100 57 36 

2006 42 194 124 73 88 45 

2007 38 162 137 88 111 69 

2008 34 128 109 62 96 75 

2009 38 135 110 31 95 70 

2010 31 116 89 26 78 67 

2011 30 83 74 33 59 71 

2012 31 60 33 27 14 23 

2013 27 50 36 20 22 44 

2014 24 52 23 18 6 12 

2015 24 48 15 10 5 10 

2016 29 61 28 13 19 31 

2017 32 69 45 26 30 43 

2018 21 47 25 11 15 32 

2019 23 45 23 12 12 27 

 

The information collected onboard at haul level included coordinates, date, depth, 

total catch and discard percentage. Additional information on daily market value of the 

species, landings value of the haul and cumulative value for the hauls in the same trip 

was also collected, using the sales records. The analysed dataset consisted of 1537 

observations on the response and on the predictors. 

Spatial distribution of the observed fishing effort, catches, discard rates and DPUE of S. 

colias is presented in Figure 5.1. Mean values for the period 2004-2019, by 0.1° 

Latitude x 0.1° Longitude grid cell, are presented. It is shown that the spatial 

distribution of fishing effort and total catches (upper panel) for the whole period 

present a similar pattern indicating the strong relation between these two variables. 

The spatial distribution of the total discards percentage and of S. colias DPUE (lower 

panel) are probably more related to the species composition of catches in the first 

case, and to the species abundance vs price, in the second case. The annual variation 

of total catches and discards percentages between areas is presented in Figure 5.2. 
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Figure 5.1. Spatial distribution of the fishing effort (upper panel left), total catch (upper panel 

right), discard percentage of all species (lower panel left) and S. colias (VMA) DPUE (lower 

panel right), in the sampled hauls of bottom trawl for demersal species (OTB_DEF) during the 

period 2004-2019. Resolution of 0.1º Lat x 0.1º Long. 
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Figure 5.2. Annual variation of total catches (left panel) and discards (right panel) by area, 

observed in the sampled hauls of bottom trawl for demersal species (OTB_DEF) during the 

period 2004-2019 (1 – NW; 2 - SW; 3 - S). 

 

5.2.2 Discards-per-unit-effort - DPUE 

DPUE presented a wide range of values due to the large variability of this species 

discards, hence the distribution of the species nominal DPUE was not easy to interpret. 

The distribution of the log-transformed non-zero DPUE (Log DPUE) is also presented 

(Figure 5.3). This Log DPUE is also used in several other analyses presented in this 

work. 

 

  

Figure 5.3. Density plot of S. colias nominal DPUE (left panel) and log-transformed of non-zero 

DPUE (right panel) in the sampled hauls from bottom trawl targeting demersal species 

(OTB_DEF), in the period 2004-2019. 

 

The annual variation of nominal DPUE, using mean DPUE estimates and their standard 

error, is presented in Figure 5.4 (left panel). The graphical analysis of the zeros 

proportions of the species against mean DPUE by year is presented in Figure 5.4 (right 

panel). The mean DPUE presented a high variability between years, suggesting two 

main periods, one from 2004 to 2010 presenting an increasing trend to the highest 
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values (2008 and 2010), and another, after 2011, with the lowest values in 2014-2015 

and a decreasing trend in most recent years (Figure 5.4 left panel). There is a linear 

relationship between mean DPUE and the percentage of the zeros, showing a 

decreasing trend of mean DPUE with increasing percentage of zeros (Figure 5.4 right 

panel). 

 

  
Figure 5.4. Mean DPUE (±1 SE) of S. colias (left panel) and annual percentage of zeros in the 

data against mean DPUE (right panel), in the sampled hauls from bottom trawl targeting 

demersal species (OTB_DEF), in the period 2004-2019. Linear model (red line) fitted to the 

data points. Correlation index is -0.8609 (p-value = 1.852e-05) (right panel). 

 

5.2.3 Potential predictor variables 

Besides year, seven other potential predictor variables were explored to evaluate how 

they are related to the response variable, DPUE of VMA (Table 5.2). The continuous 

variables latitude and longitude were used to assign the fishing area along the 

Portuguese coast. Predictor variables year, quarter and area were categorical. 

Predictor variables depth and discard of all species, excluding VMA were treated both 

as continuous and as categorical. The predictors catch of all species excluding VMA, 

market value of VMA and haul income by trip were all continuous. 
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Table 5.2.  Description of the predictor variables used in the exploratory analysis. 

Predictor Abbreviation Type Description 

Year Year Categorical 16 levels: 2004-2019 

Season Quarter Categorical 
4 levels: Quarters: January-March(Q1); April-

June (Q2); July-September (Q3); October-
December (Q4) 

Fishing area Area Categorical 
Defined by trip coordinates; 3 levels: NW 

(Caminha-Nazaré); SW (Nazaré-Sagres); S (Sagres 
– V.R.S António) 

Depth Depth 
Continuous 

Categorical 

Depth (m) of the bottom of the trawl net;  

Categorical: 4 levels: [0,100[; [100-150[; [150-
200[; [200,+∞[ 

Total discard 
other 

DOther 
Continuous 

Categorical 

Discard (%) of all species except VMA;  

Categorical: 4 levels: 0-25; 25-50; 50-75; 75-100 

Total catch 
other 

COther Continuous 
Catch of all species (kg) except VMA, by haul 

Market value Price Continuous Market value (euro) of VMA 

Income  Income Continuous 
Haul cumulative landings income (euro) of all 

species except VMA, by trip 

 

Correlation analyses between the continuous predictor variables used to depict 

collinearity between predictors, are presented in Figure A2.4 (Annex 2). It shows that 

the stronger correlation occurs between price and income variables (0.43). The 

relation between species DPUE and the explanatory variables is analysed accounting 

for the proportion of zeros and the distribution of the positive DPUE by variable. 

Assuming the possibility of nonlinearity of the data, a smooth curve (loess: locally 

weighted smoothing, span=0.75) and a linear model were fitted to the scatter plot. 

Linearity between the continuous explanatory variables and the response variable was 

analysed by fitting GAM model with Gaussian distribution. 

In order to evaluate which variables should be included in the model development, an 

exploratory analysis was performed guided by the following questions and rationales. 

 

5.2.3.1 Has percentage of zero DPUE and positive DPUE changed along the 2004-
2019 period? 

Rationale: It is expected that zero proportions of DPUE are linked to the positive DPUE 

variation among years. 

The percentage of zero DPUE decreased from 2004-2006 (62%-55%) to the lowest 

values between 2007-2011 (25%-29%). The highest values were observed in 2014-2015 
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(88%-90%), decreased until 2017 (58%) and then increased until the end of the period 

(2019: 74%) (Figure 5.5, left). 

The positive DPUE highlight the relationship between the percentage of zeros and 

positive DPUE (Figure 5.5, right). The median of the positive DPUE were higher 

between 2007-2011 and decreased in the period 2017-2019. 

 

  
Figure 5.5. Proportion of zero DPUE of S. colias per year (left panel) and boxplot of non-zero 

log-transformed DPUE (right panel) by year, in the sampled hauls from bottom trawl targeting 

demersal species (OTB_DEF), in the period 2004-2019. 

 

5.2.3.2 Does percentage of zero DPUE and positive DPUE vary with time of the 
year (quarter)? 

Rationale: Evaluate possible seasonality of the species DPUE. 

Both proportion of zeros and positive DPUE do not vary among quarters of the year 

(Figure 5.6). The ‘Quarter’ won’t be included as an explanatory variable in the model. 

 

  
Figure 5.6. Proportion of zero DPUE of S. colias per quarter (left panel) and boxplot of non-zero 

log-transformed DPUE (right panel) by quarter, in the sampled hauls from bottom trawl 

targeting demersal species (OTB_DEF), in the period 2004-2019. 
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5.2.3.3 Does percentage of zero DPUE and positive DPUE vary along the coast? 

Rationale: The spatial distribution of the species differs along the coast, with 

predominance in the S and SW areas. 

There is evidence of a decrease in the proportion of zeros from Northwest (NW) to the 

South (S) while positive DPUE is similar between NW and the Southwest (SW) areas 

and higher in the S for the whole period 2004-2019 (Figure 5.7). Figure 5.8 shows that 

S. colias Catch per-unit-effort (CPUE) for the whole period presented higher values in 

the South (left panel) and that annual DPUE estimates also occur in high percentages 

in the southern area for the main part of the period (right panel). ‘Area’ should be 

included in the model as an explanatory variable. An interaction term Year*Area was 

not considered in model configuration because there are combinations of Year*Area 

with no observations. 

 

  
Figure 5.7. Boxplot of S. colias proportion of zero DPUE (left panel) and non-zero log-

transformed DPUE (right panel) by area (1: NW; 2: SW; 3: S), in the sampled hauls from bottom 

trawl targeting demersal species (OTB_DEF), in the period 2004-2019. 
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Figure 5.8. Spatial distribution of the S. colias CPUE (resolution of 0.1º Lat x 0.1º Long) (left 

panel) and percentage of S. colias DPUE by area (1 – NW, 2 – SW, 3 - S) (right panel), in the 

sampled hauls of bottom trawl for demersal species (OTB_DEF) during the period 2004-2019. 

 

5.2.3.4 Does percentage of zero DPUE and positive DPUE vary with fishing depth? 

Rationale: At depths above 200 m there is lower probability of catching S. colias, or its 

catches are composed of bigger individuals, which may not be discarded because they 

may have higher market value. 

There seems to be a slight increasing trend between the mean proportion of zero 

DPUE and depth (Figure 5.9, left). The decreasing linear relationship observed for 

DPUE is mainly conditioned by the three observed values at depths above 400 m 

(Figure 5.9, right). The shape of the variable depth obtained from a GAM plot 

suggested violation of the assumption of linearity, hence a polynomial transformation 

of the variable was adopted (Figure 5.10). DPUE model development should evaluate 

the inclusion of the explanatory variable ‘depth’ both in absolute values and with the 

polynomial transformation. 
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Figure 5.9. Mean proportion of zero DPUE against depth by year and quarter (left panel) and 

non-zero log-transformed DPUE (right panel) against depth, in the sampled hauls from bottom 

trawl targeting demersal species (OTB_DEF), in the period 2004-2019. Linear model (red line) 

and ‘loess’ smooth (blue line) fitted to the data points. 

 

 

Figure 5.10. Shape of the continuous variable ‘depth’ with the polynomial transformation 

considered for model evaluation. 

 

5.2.3.5 Is the discard percentage of all other species related to VMA discards? 

Rationale: High discards of other species (e.g., blue whiting, blue jack mackerel) could 

indicate fishing hauls in fishing grounds with low co-occurrence of S. colias, hence low 

catch and discards of VMA. 

Contrary to the rationale, the higher is the mean total discard percentage the lower is 

the mean proportion of zero VMA DPUE, suggesting co-occurrence of the S. colias with 

other discarded species (Figure 5.11, left). As a result, there is tendency of increasing 

positive DPUE with increasing total discards (Figure 5.11, right). The explanatory 

variable discard percentage without VMA (‘DOther’) should be included in the DPUE 

model development. There was no evidence of non-linearity of the variable DOther 

(Figure A2.1, in Annex 2) and no transformation was considered for this variable. 



64 
 

  
Figure 5.11. Mean proportion of zero DPUE against total discard percentage (without VMA) by 

year and quarter (left panel) and non-zero log-transformed DPUE (right panel) against discard 

percentage (without VMA), in the sampled hauls from bottom trawl targeting demersal species 

(OTB_DEF), in the period 2004-2019. Linear model (red line) and ‘loess’ smooth (blue line) 

fitted to the data points. 

 

5.2.3.6 Does percentage of zero DPUE and positive DPUE vary with total catch 
(without VMA)?  

Rationale: Since chub mackerel, VMA, is a bycatch species of this fishery, it is likely 

that the higher the catches of main/target species the higher the discard of VMA. 

The scatterplots do not show evidence that total catch influence the mean proportion 

of zero (Figure 5.12, left). However, the positive DPUE seems to show an increasing 

trend with positive catches without VMA (Log COther) (Figure 5.12, right). Model 

development will consider the inclusion of the explanatory variable ‘COther’. There 

was no evidence of non-linearity of the variable COther (Figure A2.2, in Annex 2) hence 

variable transformation was not considered necessary. 

 

  
Figure 5.12. Mean proportion of zero DPUE against total catch (without VMA) by year and 

quarter (left panel) and non-zero log-transformed DPUE (right panel) against log-transformed 

total catch (without VMA), in the sampled hauls from bottom trawl targeting demersal species 

(OTB_DEF), in the period 2004-2019. Linear model (red line) and ‘loess’ smooth (blue line) 

fitted to the data points. 
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5.2.3.7 Does percentage of zero DPUE decrease and positive DPUE increase with 
landings income? 

Rationale: High landing income could be an incentive to discard S. colias since, besides 

horse mackerel, which is the main target species of this fishery, species composition of 

the landing has high commercial value (e.g., hake, anglerfish). 

The cumulative haul value in the trips (excluding VMA income) is used in the analysis. 

In accordance to the rational, the proportion of zero DPUE seems to decrease with the 

mean cumulative haul value (Figure 5.13, left). However, a slight decrease of the 

positive DPUE with the increasing cumulative value is also observed (Figure 5.13, 

right), suggesting that lower discard volumes of the species seem to occur with the 

increasing value of the hauls. For these reasons, DPUE model development should 

evaluate the inclusion of the explanatory variable ‘cumulative haul value’. There was 

no evidence of non-linearity of the variable ‘Income’ (Figure A2.3, in Annex 2) and 

variable transformation was not considered necessary. 

 

  
Figure 5.13. Mean proportion of zero DPUE against landing income, in euro by year and 

quarter (left panel) and non-zero log-transformed DPUE (right panel) against landing income, 

in euro, in the sampled hauls from bottom trawl targeting demersal species (OTB_DEF), in the 

period 2004-2019. Linear model (red line) and ‘loess’ smooth (blue line) fitted to the data 

points. 

 

5.3 Model fitting and diagnostics 

Generalized linear models (GLM) with log-link function as a Tweedie regression model 

were used to estimate the standardized DPUE year trend. The Tweedie distribution can 

handle zero-data uniformly (Dunn and Smyth, 2008) which is appropriate for the S. 

colias case-study given the high rate of zero observations in the data set. The power 

index parameter of the Tweedie distribution was determined using the inversion 

method for computing the (log-) likelihood function. Model fitting considered a full-

fixed effect structure with predictors year and area as factors, depth, DOther, COther, 

price and income as continuous variables. Model fitting was also performed with depth 
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and DOther as factors. Model simplification was explored. The test of the goodness-of-

fit between models was performed using the likelihood ratio test (LRT). The approach 

used to evaluate alternative models was based on the analysis of residual distribution 

patterns, the relationship between predicted and observed DPUE, the deviance 

explained and also on the value of the Akaike Information Criterion (Burnham et al., 

2011). The mean estimates of the standardized DPUE of VMA were computed with 

least-square means.  

Analyses were conducted in R (R Core Team, 2020) using the packages ‘grid’ (R Core 

Team, 2020), ‘mapplots’ (Gerritsen, 2018), ’ maptools’ (Bivand and Lewin-Koh, 2020), 

’mapdata’ (Brownrigg, 2018) and ’maps’ (Minka and Deckmyn, 2018) for map plots, 

‘Tweedie´ (Dunn, 2017; Dunn and Smyth, 2005, 2008) to determine the power index 

parameter of the Tweedie distribution, “statmod” (Dunn and Smyth, 1996) for the 

Tweedie family functions and GLM model fitting and diagnostics, ‘gam’ (Hastie, 2020) 

for the GAM models, ‘mfp’ (Axel, 2015) for the multivariate fraction polynomials, 

‘PerformanceAnalytics’ (Peterson and Carl, 2020) for analytics and correlation plots, 

‘car’ (Fox and Weisberg, 2019) for collinearity tests and “lsmeans” (Lenth, 2016) to 

compute the mean estimates of the standardized DPUE. 

 

5.4 Results and Discussion 

Figure 5.14 (left) presents the power index parameter of the Tweedie distribution, of 

1.74 (1 < p < 2), that can be represented as Poisson mixtures of gamma distributions 

and are mixed distributions with mass at zero and with support on the non-negative 

reals (Dunn and Smyth, 2005). The percentage of zeros to be explained were around 

53% (Figure 5.14, right). 

 

  
Figure 5.14. Fit of the Tweedie distribution; p-max = 1.74 using ‘mle’ method (left panel) and 

Plot of the Tweedie distribution (point: indicates the proportion of zeros in the data – 52.15%; 

line: shows the distribution of the continuous component of the model) (right panel). 
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Thirteen different models were produced and explored (Table 5.3). The first six are 

simple univariate models for each of the selected explanatory variable, while the other 

six include simple effects model starting with all the predictors together and then 

removing a continuous variable sequentially. A model was produced with all the 

categorized variables (model 12), and also a last model, with the same variables of 

model 8 but using the transformed depth, was considered. The table includes the 

results obtained from the test of the goodness-of-fit between models performed 

between the simple model and each of the model (LRT (Pr(>F))), the deviance 

explained by the model, the indication of the analysis of residual patterns and the AIC 

value. For the residual pattern analysis three different outputs were produced: a) 

residuals obtained from the model (Quantile residuals, QQ plot and Distribution of the 

quantile residuals); b) Fitted vs observed and; c) the residuals from the variables 

included in the model. 

The analysis of the results, summarized in Table 5.3, indicates that all the models 

explored presented significant improvements (Pr(>F) < 0.005) over the simple model. 

Models 6 and 7 showed however no convergence of the GLM fit and they were further 

investigated. Firstly, the variable ‘Income’ is the continuous variable present in both 

models (univariate model 6 and multivariate model 7). The data exploration showed 

the presence of five extreme values for ‘Income’. Also the fact that model 8 (without 

‘Income’, with ‘COther’) and model 9 (with ‘Income’, without ‘COther’) showed no 

convergence problems gave some indications that a possible collinearity could exist 

between ‘Income’ and ‘COther’. However, they presented a very low correlation 

between them (0.11%, Figure A2.4, in Annex 2) and also the collinearity tests 

performed using the Variance Inflation Factor (VIF) showed no collinearity issues 

regarding all variables included in those models. Models 6 and 7 were re-run using the 

same dataset but without the extreme values of ‘Income’ and they revealed no 

convergence problems. The deviance explained by this ‘new’ model 7 (30%) is the 

same of the one obtained for the model 8 when running both with the same data 

subset and with the full dataset. Therefore, the between model comparison was 

performed for the simple effect models 8 to 12 (Table 5.4, model 8 with full dataset in 

Figure 5.15-5.17 and models 9, 10, 11 and 12 in section C of the Annex 2). It indicates 

that, although the patterns of the residuals present slight differences between models, 

they are in general acceptable for all (normality and independence of errors, 

homoscedasticity, absence of outliers) despite higher dispersion around the diagonal 

line in the predicted vs observed plot. Model 8 and 13 outperformed the other models 

in terms of deviance explained, of 30%, and lower AIC, of 8814 and 8859, respectively. 

Since the transformation of the variable depth in model 13 didn’t present much 

improvement when compared to model 8, the model 13 was excluded from the model 

comparisons. Models 9, 10 and 12 presented lower deviance explained (27%) while 

model 11 had the lowest value (25%) among the explored models. Model 8 was 

adopted to estimate total annual discards. 
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Table 5.3. Summary of results from the fitted models (ns – not significant; nc – not 

comparable; Residuals patterns: QQ-plot; Fitted vs observed; residuals variables; ‘+’ - OK; ‘±’ - 

high dispersion; fact – variable converted to factor; T – variable transformed with fractional 

polynomials) 

Model code Variables LRT (Pr(>F)) 

Deviance 

explained 

(%) 

Residual 

patterns 
AIC Comment 

Mod 1 DPUE ~ Year 8.21e-14 12 - - - 

Mod 2 DPUE ~ Area < 2.2e-16 15 - - - 

Mod 3 DPUE ~ Depth 9.54e-14 7 - - - 

Mod 4 DPUE ~ DOther 4.31e-4 2 - - - 

Mod 5 DPUE ~ COther < 2.2e-16 35 - - - 

Mod 6 DPUE ~ Income 7.722e-05 2 - - 

Subset without 

5 ‘Income’ 

outlier values 

Mod 7 

DPUE ~ year + area + 

depth + DOther + 

Income + COther 

< 2.2e-16 30 - nc 

Subset without 

5 ‘Income’ 

outlier values 

ns: Income 

Mod 8 

DPUE ~ year + area + 

depth + DOther + 

COther 

< 2.2e-16 30 +; ±; + 8814 - 

Mod 9 

DPUE ~ year + area + 

depth + DOther + 

Income 

< 2.2e-16 27 +; ±; + 8853 ns: Income 

Mod 10 
DPUE ~ year + area + 

depth + DOther 
< 2.2e-16 27 +; ±; + 

8852 

 
- 

Mod 11 
DPUE ~ year + area + 

depth 
< 2.2e-16 25 +; ±; + 8884 - 

Mod 12 

DPUE ~ year + area + 

fact(depth) + 

fact(DOther) 

< 2.2e-16 27 +; ±; + 8859 - 

Mod 13 
DPUE ~ year + area + 
T(depth) + DOther + 

COther 
< 2.2e-16 30 +; ±; + 8859 - 

 

Table 5.4. presents the detailed results obtained for Model 8 (DPUE ~ year + area + 

depth + DOther + COther) and Figures 5.15-5.17 the residual plots. 
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Table 5.4. Analysis of deviance table for the Tweedie Model 8. 

Model 8 Df Deviance Resid. Df Resid. Dev F P(F) 

Deviance 

explained 

(%) 

Null   1464 22949    

Year 15 2833.75 1449 20115 9.3142 < 2.2e-16 12 

Area 2 2495.77 1447 17619 61.5247 < 2.2e-16 11 

Depth 1 534.21 1446 17085 26.3381 3.256e-07 2.3 

DOther 1 432.99 1445 16652 21.3477 4.172e-06 1.9 

COther 1 510.66 1444 16141 25.1773 5.878e-07 2.2 

 

 

Figure 5.15. Scatterplot of the residuals vs. fitted values (left panel); normal probability plot of 

residuals (middle panel); distribution of the quantile residuals (right panel) obtained in Model 

8. 

 

Figure 5.16. Scatterplot of the predicted values against the observed DPUE for Model 8. 
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Figure 5.17. Scatterplots of the residuals for each explanatory variable included in Model 8. 

 

The comparison performed between model index values and the nominal series did 

not include Model 11 because it presented the lowest deviance explained (25%) nor 

Model 13 given that its results were very similar to Model 8. For each model 

considered (Models 8, 9, 10 and 12), the DPUEs were scaled by the mean value of the 

model to remove the year effect and facilitate the comparison. The results are 

presented in Figure 5.18 and show three different trends. One that comprises models 

9, 10 and 12 that, having the same deviance explained, also present overlapping 

trends, another for the nominal series and at last the model 8 trend that is placed 

between the other two in the periods 2005-2011 and 2016-2018 and is very similar in 

the remaining periods. 
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Figure 5.18. Standardized DPUEs of S. colias obtained from each of the models (8, 9, 10, 12) 

and of the nominal series, obtained for the bottom trawl targeting demersal species 

(OTB_DEF), in the period 2004-2019. 

 

5.5 Total annual discards 

The standardized DPUE series obtained from model 8 was used to estimate annual 

discards. A simple discard raising procedure where the annual mean DPUE is multiplied 

by the fleet effort (total fishing hours) was used, instead of the design-based discard 

estimation procedure routinely used (Jardim and Fernandes, 2013). In this procedure, 

a mean DPUE per trip is raised to the reported fishing effort weighted by trip duration 

(logbooks) and then summed to obtain the annual estimate. Also, the stratified cluster 

discard estimates resulting from the approach presented in Fernandes et al. (2021) for 

the period 2012-2015 - where a similar design-based estimation is performed but with 

a cluster stratified mean DPUE instead - are included for comparison among 

approaches (Figure 5.19). 

The annual discard estimates obtained from the model-based approach (standardized 

DPUE from model 8) present a similar variation in most years when compared to the 

fleet-based estimates (Figure 5.19). Differences can be observed for the years 2004-

2005, 2011 and in 2017, where the fleet-design based approach doubled the discard 

volume of the one obtained with the model-based approach. Regarding the stratified 

cluster design-based estimation, which was considered the best discard raising 

procedure (Fernandes et al., 2021), the period with discard estimates currently 

available (2012-2015) shows the same pattern but with lower discard values. 
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Figure 5.19. Annual discard estimates obtained from the discard raising procedures using 

standardized DPUE from Model 8 (black line), annual fleet-based (red line), reported in several 

working groups, and stratified cluster-based discard estimates (green line), reported in 

Fernandes et al. (2021). 

 

5.6 Conclusions and Recommendations 

• The DPUE standardization using the Tweedie distribution seems to be a good 

approach for deriving annual discard estimates when large number of zeros are 

present in the data. 

• Improvements on annual discard estimates can be obtained using the model-

based approach when dealing with occasionally discarded species (high 

percentage of zeros in the dataset) 

• More models can be explored, considering different combinations of predictors 

or including other new predictors, to evaluate further improvements in the 

outputs. 

• A factor relating each haul to the trip duration in the model-based approach 

(number of days as used in the design-based approaches) should be included to 

improve the precision and accuracy of the model-based annual discard 

estimates.  

• The comparison among the three discard raising approaches (fleet design-

based, cluster stratified design-based and model-based) for obtaining annual 

discards should account for the precision and accuracy of the estimates, 

especially in what relates to less frequent or rare species. 

• The cross-validation procedures should be performed for evaluating the 

performance of the three different methods used in the discard raising at fleet 

level. 
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6 CASE STUDY 4: EUROPEAN HAKE (MERLUCCIUS 
MERLUCCIUS) 

6.1 Introduction 

Southern hake Merluccius merluccius stock comprises the Atlantic coast of Iberian 

Peninsula corresponding to the ICES Divisions 8.c and 9.a. This stock is one of the most 

important target species for the fleets operating in the Atlantic coast of the Iberian 

Peninsula and is caught in a mixed fishery by the Spanish and Portuguese fleets that 

include trawls, pair‐trawls, gillnetters, longliners and artisanal fleets. In the Portuguese 

continental waters (Division 9.a) hake is caught by the Portuguese fleet in the trawl 

and artisanal mixed fisheries together with other fish species and crustaceans. These 

include horse mackerel, anglerfish, megrim, mackerel, chub mackerel, blue whiting and 

the crustacean red shrimp, rose shrimp and Norway lobster. The Portuguese trawl 

fleet comprises two distinct components ‐ the trawl fleet catching demersal fish (55 

mm mesh size) and the trawl fleet targeting crustaceans (70 mm mesh size). The fleet 

targeting fish species operates along the entire Portuguese coast mostly at depths 

between 100 and 200 m. The trawl fleet targeting crustaceans operates mainly in the 

southwest and south in deeper waters, from 100 to 750 m. Historical information and 

details on the southern hake catches by country and gear for the period 1972-2019 is 

available at ICES (2020). 

In 2003, the International Council for the Exploitation of the Sea (ICES) classified the 

stock as being outside safe biological limits and advised a rebuilding plan. Accordingly, 

a recovery plan was introduced by the European Commission in 2006 aiming at 

rebuilding the stock to safe biological limits. After a recovery plan that improved the 

spawning‐stock biomass to levels above the Bpa and MSYBtrigger biological reference 

points, the stock is currently managed under the EU multiannual plan for Western 

Waters and adjacent waters (EU, 2019). The plan predicts the use of the concept of 

“Pretty Good Yield” (Hilborn, 2010), materialized by a range around FMSY that would 

also allow for more flexibility in mixed fisheries management with advised hake 

catches between the estimated FMSY ranges. 

Since 2010, based on the decisions of ICES (2010,2014) a length-based model with 

GADGET (“Globally applicable Area Disaggregated General Ecosystem Toolbox”) is used 

to perform the stock assessment. The model uses the Spanish and the Portuguese IBTS 

(“international Bottom Trawl Surveys) surveys to tune the model, by fitting the model 

estimates to the observed length proportions and abundance trends. In addition, two 

CPUE series are also used as relative abundance indices to tune the model. The two 

fleets included in the assessment model are the Coruna trawlers CPUE (from 1985 to 

2012) and the Portuguese trawlers standardized CPUE (from 1989 to 2019). 
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In 2019, the GADGET model showed a more severe non-precautionary retrospective 

bias – overestimation of the spawning stock biomass and underestimation of the 

fishing mortality – and, in 2020, it was not accepted for stock assessment and advice 

this year. Without an analytical assessment, the Spanish IBTS survey and the 

Portuguese LPUE were the only series available to make an ICES Category 3 advice 

calculation, that requires a stock-size indicator with representative trends having, at 

least, the last 5 years available (ICES, 2019). The Portuguese IBTS survey index was not 

considered because the survey was not conducted in the last two years. These 

circumstances promoted the Portuguese LPUE series as one of the main trend series to 

guide the scientific advice for this important stock.  

Following the previous work of Cardador and Jardim (2010), we re-evaluate the 

current LPUE methodology used for advice and provide guidance on additional 

methodologies for estimating an abundance index based on commercial catch-effort 

data, namely the use of the Least-Square means method (LS means) providing an 

alternative prediction from the standardized LPUE series. 

 

6.2 Exploratory data analysis 

In this study the LPUE – referred in this section as CPUE – is estimated based on the 

effort data (tow duration in hours) and respective landings series (in kg) collected from 

Portuguese logbooks and compiled by IPMA from 1992-2019. This latest series used in 

the present study is based on a renewed extraction of the complete logbook dataset 

housed in the DGRM (Portuguese administration) databases, which includes both 

paper and e-logbooks. From 2003 discards on this species are also available from the 

work of the Portuguese Discard Sampling Programme, based on a quasi-random 

sampling of co-operative commercial vessels from the crustacean and fish trawl fleets. 

Discard data were not evaluated and therefore not included in the CPUE analysis.  

The logbooks selected are those from trawlers with at least one hake catch record and 

including all the other species caught. The removal of hauls with zero catch, contrasts 

with the methodologies described in the other sections of this report (e.g., see section 

2.2.4) and decreased the logbook entries available for analysis from more than 

500,000 to n=71,015. The daily records include the ICES statistical rectangles from a 

spatial grid (with intervals 30´ latitude and 1º longitude) covering the Portuguese 

continental coast. ICES rectangles were assigned to geographical zones: North, 

Southwest and South (Figure 6.1) and missing rectangles were assigned to an area 

designated by “x”.  

Additionally, data on the main characteristics of each trawler are also selected for the 

CPUE standardization model: engine power (xpot in kW), gross registered tonnage 
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(GRT in tonnes), length-over-all (m). On each record, trawling hours (hours), total 

catch, catch of hake, catch of hake/total catch (phke) are computed per day and a 

metier type (HOM, CEF, WHB and MIX) is also assigned to each record, following the 

methodology in Silva et al. (2009). 

 

Figure 6.1.  Geographical areas in Portuguese continental coast (adapted from Cardador and 

Jardim, 2010). 

 

Explanatory variables were analysed (e.g., significance, collinearity) and Cardador and 

Jardim (2010) decided to use engine power as the main factor that influence the 

catchability of the vessel, as this variable is also highly correlated with gross tonnage 

and length overall (LOA). Following the exploratory analysis, the selected variables 

were categorized with the following levels: 



78 
 

 

Figure 6.2 shows the CPUE distribution across all levels of the relevant factors; engine 

power (cla_xpot), métier type, fishing zone, percentage of hake (cat_phke) and tow 

duration (cat_hours). Very high CPUE values are observed in 2013 to 2015 when 

compared with the rest of the dataset (Figure 6.2a). The engine power time series 

indicates a major increase in recent years for levels (500-600]kW, (700-800]kW and 

(800,900]kW (Figure 6.2b). Considering the fishery type, hom and mix métiers have the 

biggest CPUE values along the time series (Figure 6.2c). At the beginning of the series 

and until 2005, area n showed higher CPUE values when compared with the other 

areas, however in recent years, areas S and SW showed a significant increase, reaching 

maximum CPUE values (Fig. 6.2d). The percentage of hake in the catch shows an 

increasing trend along the years, with (0-10]% and (10-25]% the levels with the biggest 

CPUEs values (Fig. 6.2e). The trawling hours category has considerable variation among 

levels. The level (0-4]hour has the higher mean value along the time series and shows a 

significant peak in 1990 (Fig. 6.2f). 

Year – 1989 : 2019 

Zone – n, sw, s and x 

Cla.xpot (kW) – (500,600], (600,700], (700,800], (800,900] 

Metier – HOM, CEF, WHB, MIX 

cat_phke – 0-10%, 10-25%, 25-100% 

cat_catch (kg) – (1, 150], (150, 400], (400, 1000], (1000, 3000], (3000, 8000], >8000 kg 

cat_hours – (1-4], (4-8], (8-12], (12-16], (16-20] 
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Figure 6.2. Interaction plots of CPUE (kg/hr) by (a) year, (b) category of engine power (cla.xpot) 

(c) métier, (d) fishing areas (zone), (e) percentage of hake in the catch (cat_phke) and (f) tow 

duration (cat_hours). 

 

6.3 Model fitting and predictions 

The hake standardized CPUE from the Portuguese bottom-trawl fleet targeting 

roundfish has been routinely calculated each year in the advice working group by 

fitting a Generalized Linear Model (GLM, annex 1) to logbook data on landings and 

effort, following the methods described in Cardador and Jardim (2010). Modelling was 

performed in the R environment (V.4.0.3, http://www.r-project.org/) using the glm 

routines (R Core Team, 2020).  

The nominal hake CPUE distribution is highly skewed, and the standard deviation 

increases with the mean approximately proportionally. In these circumstances, the 

gamma distribution with a log link function was found to be appropriate for the 

response variable. The modelling strategy consisted of a stepwise procedure that 

started by testing the significance of the explanatory variables followed by the 

inclusion of first order interactions. The variables (and potential interactions) retained 

were those with more than 1% contribution to the overall variance. The final 
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standardized CPUE GLM with the gamma distribution and log link function is expressed 

as: 

 

The model fitted to the full 1989-2019 dataset with the following parameter estimates 

(the model intercept represents the overall mean referred to the first level of each 

factor): 

                   Estimate Std. Error t value Pr(>|t|)     

(Intercept)        0.732545   0.082850   8.842  < 2e-16 *** 

year1990          -0.059733   0.096825  -0.617   0.5373     

year1991          -0.164278   0.133412  -1.231   0.2182     

year1992          -0.232976   0.097827  -2.382   0.0172 *   

year1993          -0.423818   0.107624  -3.938 8.23e-05 *** 

year1994          -0.230437   0.118796  -1.940   0.0524 .   

year1995           0.003298   0.106847   0.031   0.9754     

year1996          -0.091263   0.113535  -0.804   0.4215     

year1997           0.065934   0.121321   0.543   0.5868     

year1998          -0.097101   0.102482  -0.947   0.3434     

year1999           0.091480   0.093557   0.978   0.3282     

year2000          -0.244676   0.137024  -1.786   0.0742 .   

year2001           0.003899   0.117409   0.033   0.9735     

year2002          -0.014132   0.088730  -0.159   0.8735     

year2003          -0.103363   0.075907  -1.362   0.1733     

year2004          -0.105174   0.074841  -1.405   0.1599     

year2005          -0.034807   0.075470  -0.461   0.6447     

year2006          -0.101339   0.088753  -1.142   0.2535     

year2007          -0.147173   0.072141  -2.040   0.0413 *   

year2008           0.036093   0.072535   0.498   0.6188     

year2009          -0.027032   0.074146  -0.365   0.7154     

year2010          -0.025281   0.075026  -0.337   0.7361     

year2011          -0.016675   0.078340  -0.213   0.8314     

year2012           0.156956   0.073918   2.123   0.0337 *   

year2013           0.100625   0.074307   1.354   0.1757     

year2014           0.079381   0.075539   1.051   0.2933     

year2015           0.353386   0.075103   4.705 2.54e-06 *** 

year2016           0.072427   0.075054   0.965   0.3345     

year2017           0.007444   0.075736   0.098   0.9217     

year2018           0.033540   0.075300   0.445   0.6560     

year2019           0.059481   0.075204   0.791   0.4290     

zones              0.194395   0.021898   8.877  < 2e-16 *** 

zonesw             0.262188   0.017927  14.625  < 2e-16 *** 

zonex             -0.137733   0.025434  -5.415 6.14e-08 *** 

cla.xpot(600,700]  0.040103   0.020321   1.973   0.0484 *   

cla.xpot(700,800] -0.054629   0.023262  -2.348   0.0189 *   

cla.xpot(800,900]  0.201360   0.039202   5.137 2.81e-07 *** 

metierhom          0.241728   0.035908   6.732 1.69e-11 *** 

metiermix          0.283914   0.033891   8.377  < 2e-16 *** 

metierwhb         -0.170927   0.072516  -2.357   0.0184 *   

cat_phke(10,25]    1.016013   0.016165  62.852  < 2e-16 *** 

cat_phke(25,100]   1.776858   0.023196  76.602  < 2e-16 *** 

cat_catch(5,6]     0.881720   0.030014  29.377  < 2e-16 *** 

cat_catch(6,7]     1.699591   0.030343  56.012  < 2e-16 *** 

cat_catch(7,8]     2.388133   0.032527  73.419  < 2e-16 *** 

cat_catch(8,9]     2.835697   0.038843  73.004  < 2e-16 *** 

cat_catch(9,12]    3.188370   0.087372  36.492  < 2e-16 *** 

ln [E (CPUE)] ~ year + zone + clax.pot + metier + cat_phke + cat_catch + cat_hours 
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cat_hours(4,8]    -0.865484   0.024028 -36.020  < 2e-16 *** 

cat_hours(8,12]   -1.262385   0.026796 -47.112  < 2e-16 *** 

cat_hours(12,16]  -1.596604   0.031288 -51.029  < 2e-16 *** 

cat_hours(16,20]  -1.888436   0.037823 -49.929  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Null deviance: 90376  on 71015  degrees of freedom 

Residual deviance: 28941  on 70965  degrees of freedom 

AIC: 492030 

 

The model fitted explains 68% of the overall variability, total catch factor has the 

highest contribution, followed by trawling hours, zone and percentage of hake. The 

metier and engine power have the lower contribution in the variability explained. 

These results are very similar to the ones observed in Cardador and Jardim (2010). 

 

 

Figure 6.3. Residual analysis.  On the upper panels, the residuals of the GLM model using the 

1989-2008 dataset as fitted by Cardador and Jardim (2010) and on the bottom the residual 

analysis of the full dataset GLM fit. The plot on the left represents the values of the residuals 

along the predicted (log) values, followed by the quantile-quantile plot, the distribution of 

quantile residuals and the plot on the right represent the leverage analysis of the residuals. 

 

The residuals of the GLM model using the 1989-2008 dataset as fitted by Cardador and 

Jardim (2010) are shown in the upper panels of Figure 6.3 and the residuals of the GLM 

fit with the complete dataset (1989-2019) are shown in the lower panels of Figure 6.3. 

In terms of model validation, the residual analysis, including the residuals distribution 

along the fitted values and the quantile-quantile (QQ) plots, showed that the 1989-

2008 GLM model is in general adequate, although with a presence of some potential 

outliers. However, according to the leverage analysis these are not influential 

observations on the overall fit. The residual analysis of the model with the complete 
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dataset shows a bigger number of potential outliers (mainly the 2013-2015 

observations as indicated in Figure 6.2), however these observations do not seem to 

influence the overall fit of the model. Although the model assumption seems to agree, 

the scale of these larger residuals have a visual impact on the model diagnostics, the 

removal of these observations (not shown) significantly improved the visual shape of 

the residuals distribution along the fitted values and the QQ plots for both dataset fits. 

 

Reference “fleet” prediction vs. LS means prediction 

Following the previous work of Cardador and Jardim (2010), we re-evaluate the 

proposed methodology that uses the predictions from a reference “fleet” on the 

standardized model to estimate the CPUE. The annual CPUE for advice is estimated 

from the predicted model considering a reference “fleet”. This “fleet” is in fact a 

combination of reference levels in each factor of the GLM model and are as follows: 

zone = north, clax.pot = (500,600]kW, cat_phke = (10,25]%, cat_catch = (400,1000]kg, 

hours = (1-4) and metier = mix.  

For comparison purposes with the reference “fleet” methodology, we also used the 

Least-Squares means method where predictions from the model are adjusted for the 

effects of year averaged over all the levels the selected variables. The Least-Squares 

means for the GLM were estimated using the lsmeans package (v. 2.30-0, Lenth, 2016) 

and doBy (v. 4.6.8, Højsgaard et al., 2014). The plots were designed using library 

ggplot2 (v. 3.3.3 Wickham, 2009). 

Table 6.1 summarizes the parameters (effects) estimated by the GLM procedure used 

for the predictions in the reference “fleet” method and using the LS means method. 

The effects from all the level/factors are lower in the LS means, indicating that the 

chosen “fleet” reference levels are above average when compared to the other levels 

for each factor. The factors cat_phke, metier and cat_catch achieved the higher 

differences.   

Figure 6.4 shows the predicted CPUE with 95% confidence intervals using the LS mean 

method and the reference “fleet” estimated effects. The prediction in LS means has a 

significantly lower mean value, which can be explained by the combination of lower 

estimated effects in the factors with a higher contribution for the variability explained 

in the model. It is also noticeable that despite the difference in scale, the trajectory of 

the CPUE series is comparable and both series indicate similar temporal trends in the 

relative abundance of the stock. 
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Table 6.1. Parameter effects for the reference levels estimated by the standardized GLM 

model procedure and using the LS means method (year effect not shown).  

Factor/level Reference “fleet” prediction 
effects 

LS means prediction 
effects 

Zone n  0.733 0.250 

cla.xpot(500,600] 0.733 0.250 

metier mix  1.016 0.250 

cat_phke(10,25]

  

1.749 0.333 

cat_catch(0,5]  0.733 0.167 

cat_hours(1,4] 0.733 0.200 

 

 

Figure 6.4. The red line indicates the CPUE estimated from the reference level/factors and the 

blue line the CPUE estimated by the lsmeans method with 95% confidence intervals (shaded 

area). 
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6.4 Discussion  

This study re-evaluated with new data from 2009-2019, the work developed by 

Cardador and Jardim (2010) to build a standardised hake CPUE for the Portuguese 

trawl fleet between 1989 and 2008. The applied method of predicting the CPUE using 

reference levels from the variable factors of the standardized CPUE GLM model is not 

very common in the literature. Recent advances in modelling techniques have also 

enabled the possibility of applying more complex models and statistical distributions 

that allows for frequent zero-value observations which are very common in 

commercial-catch logbook data. 

The rationale behind the chosen reference levels is not entirely clear and some 

inconsistencies can be found in the available R script in the document and the 

proposed reference levels. However, Cardador and Jardim (2010) performed extensive 

analysis on the statistical differences and effects on the CPUE for each level/factor 

arrangement. The proposed reference levels suggest a combination of expert 

judgment and the level/factor with more representation in the 1989-2008 dataset (e.g. 

zone north, metier mix) to allow the abundance index to be estimated with more data. 

It was argued that the chosen reference levels better describe the relevant trip 

strategies (e.g. inclusion of a percentage of hake factor) and improved the adjustment 

of the main effects model and CPUE comprehension. Additionally, correlations were 

found between the CPUE series and the biomass indices from the Portuguese Winter 

and Autumn groundfish surveys, which also gave confidence that the predicted CPUE 

using reference levels was reflecting the abundance of hake in Portuguese waters. 

In this study we also used the LS means method to predict from the standardized CPUE 

GLM model. When comparing the CPUE series estimated by the predictions from the 

reference “fleet” and the LS means method, there were noticeable differences in the 

mean value. These differences were to be expected given the different levels used for 

predictions in both methods but also amplified by some changes in the fleet behaviour 

between 2009-2019 (increased importance of area SW and S when compared to 

North). Interestingly enough and despite having larger differences in the mean, both 

CPUE series have very similar temporal trends that are probably explained by the 

chosen reference levels which seems to be representative of the overall effects of the 

factors total catch, percentage of hake and trawling hour, factors which also have 

larger contributions in the explained model variability. If using the LS means, the 

annual series would show an intermediate prediction compared to all possible 

combinations when using reference levels. 

The CPUE is a relative abundance index, where the dynamics of the series is more 

important than the magnitude, and despite the changes in the fleet behaviour, the 

chosen reference level/factor are still capable to capture the abundance dynamics of 

hake. 
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6.5 Conclusions and Recommendations 

One interesting feature of the methodology developed by Cardador and Jardim (2010) 

re-evaluated in this study, is the inclusion of reference levels in the selected variable 

factors of the standardized CPUE GLM model. This methodology is not very common in 

the literature and recent advances in modelling techniques, computational power and 

optimization routines have enabled the possibility of applying more complex models 

and statistical distributions that allows for frequent zero valued observations which are 

very common in commercial-catch logbook data. These new techniques and advances, 

suggest the exploration of alternative methods to estimate an abundance index for 

hake, where the information provided by the zero valued observations can be taken 

into account. 

The recent changes in the hake spatial distribution of catches and fleet behaviour 

suggest that the reference level/factors should be updated if using the current advice 

CPUE reference “fleet” methodology. 
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7 RECOMMENDATIONS FOR FUTURE WORK 

The following recommendations for CPUE standardization and future work are 

provided: 

 Model diagnostics: Model diagnostics are fundamental to validate and compare 

models. In the work provided here we explore some diagnostics including 

goodness-of-fit measures and residual analysis. Future work could explore 

additional diagnostics, such as for example cross validation procedures to 

determine the predictive capacity of the models; 

 Environmental variables: The inclusion of environmental variables in the CPUE 

standardization contributes to improving the models, which has been shown in 

simulation work for oceanic species. As such, future work could be to explore 

the feasibility of including such variables in the case studies that are now being 

developed mostly for coastal species; 

 Targeting effects: Catch related explanatory variables, not truly independent 

from the response variable, should be avoided as e.g. proxies of target fishing 

based on the actual catch numbers or proportions of the species in the 

response variable. Instead, it might be possible to explore clustering methods 

using the catch composition by species to find fishing clusters that may be used 

as covariates in model fitting; 

 Model complexity: Increasing model complexity by including many variables 

should be avoided. Expert knowledge of the data and the fishery should be 

used to consider testing only variables for which there is a good reason a priori 

to expect a relationship with the response variable. 
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8 ANNEX 1: GLM AND GLMM MODELS WITH THE TWEEDIE 
DISTRIBUTION 

GLM model 

The GLM model (McCullagh and Nelder, 1989; Agresti, 2002) can be noted as: 

                                    

Where η represents the link function, xi the model variables, β the model coefficients 

(estimated by maximum likelihood), and ε represents the errors. 

 

GLMM model 

The GLMM model can be defined as: 

                                             

Where η represents the link function, xi the model fixed effects variables, β the model 

coefficients (usually estimated by penalized quasi-likelihood (Venables and Ripley, 

2002) or Laplace approximations (Bolker et al., 2008)), a represents the random 

variable with a distribution defined by          , and ε represents the errors. 

 

Tweedie distribution 

The Tweedie distribution is part of the exponential family of distributions (Dunn, 

2004), and is defined by: 

E(Y)=μ 

Var(Y)=φ×μ^p 

In which φ is the dispersion parameter and p is the index parameter. 

When the index (p) parameter has values between 1 and 2, the distribution is 

continuous for positive real numbers, but has an added discrete mass at 0, which 

seems appropriate to model CPUE data (continuous data with an added mass of zeros). 

In this case, the distribution is also called a compound Poisson-Gamma distribution. To 

define this, the index parameter is calculated externally to the models, by maximizing 

the likelihood profile function of possible values of p between 1 and 2. The Figure 1 

below provides the shapes of some Tweedie distributions for different p-indices, 

including cases with the p-index between 1 and 2 (examples of compound Poisson-
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Gamma) and with p-index values higher than 3 (example of a positive stable 

distribution). 

 

Figure A1.1. Shape of several Tweedie distributions for various p-index values (as defined 

inside the figure legend). In this figure, the other parameters are kept constant on all 

distributions (μ =1, φ =1). 
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9 ANNEX 2: ADDITIONAL MATERIALS FROM CS3 

Section A - GAM plots for the explanatory continuous variables selected for the 

model evaluation 

 

 

Figure A2.1. Shape of the explanatory variable ‘DOther’ obtained from the GAM using a 

Gaussian distribution 

 

 

Figure A2.2. Shape of the explanatory variable ‘COther’ obtained from the GAM using a 

Gaussian distribution. 
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Figure A2.3. Shape of the explanatory variable ‘Income’ obtained from the GAM using a 

Gaussian distribution. 

 

Section B - Correlation plot for the explanatory variables evaluated for the modelling 

 

Figure A2.4. Correlation between continuous variables depth, discard percentage without 

VMA (DOther), catches without VMA (COther), VMA price (Price), cumulative haul value per 

trip (Income), in the sampled hauls from bottom trawl targeting demersal species (OTB_DEF), 

in the period 2004-2019. (symbols represent p-values: “***” -  0; “**” - 0.001; “*” – 0.05; “.”:  

0.1; and “ ”: 1). 
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Section C - Results obtained in the non-selected models 

Model 9: DPUE ~ year + area + depth + DOther + Income 

Table A2.1. Analysis of deviance table for the Tweedie Model 9. 

Model 9 Df Deviance Resid. Df Resid. Dev F P(F) 

Deviance 

explained 

(%) 

Null   1464 22949    

Year 15 2833.75 1449 20115 9.2099 < 2.2e-16 12 

Area 2 2495.77 1447 17619 60.8356 < 2.2e-16 11 

Depth 1 534.21 1446 17085 26.0431 3.783e-07 2.3 

DOther 1 432.99 1445 16652 21.1085 4.718e-06 1.9 

Income 1 14.86 1444 16637 0.7245 0.3948 0.6 

 

a) 

 

b) 

 

c) 

 
 
Figure A2.5. Outputs from the Model 9 analysis: a) Scatterplot of the residuals vs. fitted values 

(left panel); normal probability plot of residuals (middle panel); distribution of the quantile 

residuals (right panel); b) Scatterplot of the predicted from the model fit and the observed 

DPUE; c) Scatterplots of the residuals for each explanatory variable included in Model 9. 
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Model 10: DPUE ~ year + area + depth + DOther 

Table A2.2. Analysis of deviance table for the Tweedie Model 10. 

Model 10 Df Deviance Resid. Df Resid. Dev F P(F) 

Deviance 

explained 

(%) 

Null   1464 22949    

Year 15 2833.75 1449 20115 9.147 < 2.2e-16 12 

Area 2 2495.77 1447 17619 60.420 < 2.2e-16 11 

Depth 1 534.21 1446 17085 25.865 4.141e-07 2.3 

DOther 1 432.99 1445 16652 20.964 5.081e-06 1.9 

 

a) 

 

b) 

 

c) 

 
 

Figure A2.6. Outputs from the Model 10 analysis: a) Scatterplot of the residuals vs. fitted 

values (left panel); normal probability plot of residuals (middle panel); distribution of the 

quantile residuals (right panel); b) Scatterplot of the predicted from the model fit and the 

observed DPUE; c) Scatterplots of the residuals for each explanatory variable included in 

Model 10. 
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Model 11: DPUE ~ year + area + depth 

Table A2.3. Analysis of deviance table for the Tweedie Model 11. 

Model 11 Df Deviance Resid. Df Resid. Dev F P(F) 

Deviance 

explained 

(%) 

Null   1464 22949    

Year 15 2833.75 1449 20115 8.906 < 2.2e-16 12 

Area 2 2495.77 1447 17619 58.831 < 2.2e-16 11 

Depth 1 534.21 1446 17085 25.185 5.855e-07 2.3 

 

a) 

 

b) 

 

c) 

 
 
Figure A2.7. Outputs from the Model 11 analysis: a) Scatterplot of the residuals vs. fitted 

values (left panel); normal probability plot of residuals (middle panel); distribution of the 

quantile residuals (right panel); b) Scatterplot of the predicted from the model fit and the 

observed DPUE; c) Scatterplots of the residuals for each explanatory variable included in 

Model 11. 
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Model 12: DPUE ~ year + area + fact(depth) + fact(DOther ) 

Table A2.4. Analysis of deviance table for the Tweedie Model 12. 

Model 12 Df Deviance Resid. Df Resid. Dev F P(F) 

Deviance 

explained 

(%) 

Null   1464 22949    

Year 15 2833.75 1449 20115 9.210 < 2.2e-16 12 

Area 2 2495.77 1447 17619 60.836 < 2.2e-16 11 

Fact(depth) 1 625.38 1444 16994 10.1628 1.264e-06 2.7 

Fact(DOther) 1 366.03 1441 16628 5.9482 4.973e-04 1.6 

 

a) 

 

b) 

 

c) 

 
 
Figure A2.8. Outputs from the Model 12 analysis: a) Scatterplot of the residuals vs. fitted 

values (left panel); normal probability plot of residuals (middle panel); distribution of the 

quantile residuals (right panel); b) Scatterplot of the predicted from the model fit and the 

observed DPUE; c) Scatterplots of the residuals for each explanatory variable included in 

Model 12. 
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