Tomographic determination of the spatial distribution of Water Vapor using GNSS observations for real-time applications

Berndnaut Smilde @rochini gallery

Workshop em Previsão Numérica – IPMA

André Sá

26 - 27 November 2018

Presentation structure

- Informative introduction
 - GNSS meteorology
 - Water vapor estimation
 - GNSS PWV
 - GNSS Tomography
- SWART tomographic system
- Case-studies
- Conclusions

GNSS meteorology: Water vapor estimation

"You may delay, but time will not!" Benjamin Franklin "Time, it's the physical parameter which we can measure with highest accuracy!" Gunnar Elgered

GNSS meteorology: Water vapor estimation

 $STD = mf_h(\varepsilon)ZHD + mf_w(\varepsilon)ZWD + S_w$

ZTD = ZHD + ZWD

PWV = k * ZWD

GPS Satellites

$$k = \frac{10^6}{\left(\frac{k_3}{T_m} + k_2'\right)R_v\rho}$$

 $\label{eq:constants} Constants \ related \ with \ water \ vapor: \ \ (k_3,k_2',R_u,\rho) \\ Profile \ or \ integral \ of \ the \ mean \ temperature: \ (T_m)$

Standard techniques for solving linear inverse problems:

- Singular value decomposition
- Tikhonov-Regularization
- Conjugate gradient method
- Weighted least-squares solution
- Kalman-filter
- Algebraic reconstruction techniques

SWART tomographic system

Tomographic system was developed that uses Algebraic Reconstruction Techniques (ART) for the tomographic water vapor (SEGAL GNSS Water Vapor Reconstruction Image Software – SWART);

Real-time processing capabilities through the parallelization of the ART.

Case-studies

• Case Study I: Intercomparison multi-model tomography. The comparison of the SWART tomographic system results with other softwares.

Cross-validation of GPS tomography models and methodological improvements using CORS network, Atmos. Meas. Tech. Discuss., <u>https://doi.org/10.5194/amt-2018-292</u>, submitted. (Brenot et al., 2018)

• Case Study II: Evaluation of real-time applicability of the SWART tomographic system.

GPS stations (red circles), Radiosonde sites (blue triangles), Radio-occultation profiles (white-purple lines), OMI cloud top altitude at 04:07 on 2010/03/06 (purple-blue-orange pattern; c.f. a) and the tomography grid (inner grid in thick black lines and outer grid in thin black lines); b) Red square represents altitudes above the sea level of the centres of each voxel of the tomography grid.

Processing strategy:

- Double differenced Bernese 5.0
- ZTD + Gradients (30 min resolution)
- ZHD extracted from ACCESS-A
- Isotropic mapping function GMF
- Anisotropic mapping function Chen and Herring
- Gradient hydrostatic part was removed using ACCESS-A

Used models:

Tomography model	Inversion	Dim	Retrievals
BIRA	SVD, weighted&damped LS adjustment	3D	₽wv , Nw
TOMO2	Kalman filter with selective SVD	3D	, <i>ρ</i> wv , Nw
SWART	SART	3D	₽wv , Nw

BIRA: BIRA – IASB TOMO2: WUELS SWART: SEGAL – UBI

 $L_{sym}^{wet}(\epsilon) = ZWD \cdot mf_{sym}^{wet}(\epsilon)$

 $L_{az}^{wet}(\epsilon, \alpha) = mf_{az}^{wet}(\epsilon, C) \cdot (G_{NS}^{wet} \cdot \cos(\alpha) + G_{EW}^{wet} \cdot \sin(\alpha))$

RS-ACCESSR

• Initialization impact and time resolution

• Stacked data (2h; 1h; 30 min)

• Add pseudo-observations (no stack; stacked data 30')

• Processing Time

Number of slants	1826	3151	6094	15756
Matrix size	1826*1792	3151*1792	6094*1792	15756*1792
SWART (seconds)	15.81	21.70	34.15	114.51
BIRA (seconds)	120 (2 min)	480 (8 min)	7800 (130 min)	Not computed

Performed over the territory of Poland using data from a period of 56 days (from 05-05-2013 to 29-06-2013). 26 GNSS stations were used with an average distance of 50 km.

• The goal of this case study was to understand the performance quality of the SWART tomographic model using simulated real-time data. For this purpose, the post-processed 15-min data were interpolated into a 5-min solution to simulate real-time conditions. Following Schenewerk (2003) a 9-term trigonometric interpolater was implemented.

Comparison between SWART WV (initialization each hour) and WRF

Stats Iomography	Stats	Tomography
------------------	-------	------------

ł

leight	BIAS	STD	RMS	
250	-0.3760	1.9665	2.0021	
750	0.3043	1.5046	1.5351	
1250	0.4584	1.4085	1.4812	
1750	0.4788	1.3964	1.4762	
2250	0.3087	1.4485	1.4810	
2750	0.2019	1.2385	1.2549	
3750	0.2722	0.9050	0.9451	
5250	0.1926	0.4253	0.4669	
6750	0.0921	0.2521	0.2684	
8250	0.0014	0.2341	0.2341	
11750	-0.0721	0.2822	0.2913	
Stats WRF				

Height	BIAS	STD	RMS
250	-0.3721	1.9678	2.0026
750	0.3363	1.5210	1.5578
1250	0.5255	1.4524	1.5445
1750	0.5486	1.4684	1.5675
2250	0.3714	1.5334	1.5778
2750	0.2630	1.3184	1.3443
3750	0.3267	0.9645	1.0183
5250	0.2420	0.4513	0.5121
6750	0.1433	0.1854	0.2343
8250	0.0547	0.0620	0.0827
11750	0.0065	0.0039	0.0076

Comparison between SWART (initialization each 24h) and WRF

Stats Tomography

	🕨 📄 stats	TOMO_W	∕.txt ∽	
Height	BIAS	STD	RMS	
250	-0.6121	2.0306	2.1208	
750	0.1346	1.6741	1.6795	
1250	0.2064	1.4911	1.5053	
1750	0.3190	1.4558	1.4903	
2250	0.2588	1.4519	1.4748	
2750	0.2323	1.2884	1.3092	
3750	0.1764	0.9589	0.9749	
5250	0.1673	0.5039	0.5309	
6750	0.1032	0.3046	0.3216	
8250	0.0401	0.2641	0.2671	
11750	0.0202	0.3387	0.3393	J

Stats WRF

🛑 😑 🔵 📄 stats_WRF_WV.txt ~					
Height	BIAS	STD	RMS	1	
250	-0.3721	1.9678	2.0026		
750	0.3363	1.5210	1.5578		
1250	0.5255	1.4524	1.5445		
1750	0.5486	1.4684	1.5675		
2250	0.3714	1.5334	1.5778		
2750	0.2630	1.3184	1.3443		
3750	0.3267	0.9645	1.0183		
5250	0.2420	0.4513	0.5121		
6750	0.1433	0.1854	0.2343		
8250	0.0547	0.0620	0.0827		
11750	0.0065	0.0039	0.0076	1	

Conclusions

- Implementation and validation of a GNSS tomographic system was successfully tested;
- The results of the tests and studies performed in comparison to other tomography systems revealed SWART as a reliable tomography technique to estimate water vapor in the atmosphere;
- The various tests conducted emphasize the importance of a priory data for initialization of tomography with high impacts in the retrieved solution. SWART presents better results with the increase of the amount of the data.
- When sharp variability is observed in the RS profiles, and not detected by the WRF, the SWART is only able to reproduce such variations when WRF a priori initialization data is used only at the first epoch.
- Concerning the real-time capabilities this issue was addressed by using ART algorithms parallelized. The SWART processing time SWART 34.15" BIRA 30 min.

End!

Thanks for your attention!