



# Impact of snow data assimilation on river discharge

Thanks:

Souhail Boussetta, Gabriele Arduini, Gianpaolo Balsamo and Patricia de Rosnay (ECMWF)

NWP in Portugal IPMA, Lisbon, 26-27 November 2018

- Analysis using 2D Optimal interpolation (OI)
  - Application to snow depth
- Surface-only simulations with and without sequential assimilation
  - Impact on snow cover & river discharge
- Surface & assimilation related ideas for collaboration:
  - Near-surface & precipitation analysis;
  - Satellite Land-surface temperature ;



Generic data assimilation

$$\mathbf{x}^{a} = \mathbf{x}^{b} + \mathbf{W}[\mathbf{y}^{o} - \mathbf{H}(\mathbf{x}^{b}]]$$
  $\begin{array}{l} \mathbf{x}^{a} - \text{analysis; } \mathbf{x}^{b} - \text{first guess; } \mathbf{W} - \text{weights;} \\ \mathbf{y}^{o} - \text{observations; } \mathbf{H} - \text{observations operator} \end{array}$ 

In the case of OI **W** is determined by minimizing the analysis errors at each grid-point (not a global cost function as 3DVAR).



Generic data assimilation

 $\mathbf{x}^{a} = \mathbf{x}^{b} + \mathbf{W}[\mathbf{y}^{o} - \mathbf{H}(\mathbf{x}^{b}] \quad \frac{\mathbf{x}^{a}}{\mathbf{y}^{o}} - analysis; \mathbf{x}^{b} - first guess; \mathbf{W} - weights;$  $\mathbf{y}^{o} - observations; \mathbf{H} - observations operator$ 

In the case of OI **W** is determined by minimizing the analysis errors at each grid-point (not a global cost function as 3DVAR).

The optimal weights (**w**) are given for each point p:(B + R)w = b

- *b* background error covariance between obs. and model (vector)  $\sigma_b^2 \times \mu(i, p), \sigma_b = 3cm$
- *B* background field errors between obs. (matrix):

 $\sigma_b^2 \times \mu(i, j), \sigma_b = 3cm$ 

**R** – Covariance matrix of the observation errors :  $\sigma_o^2 I$ ,  $\sigma_o = 4$  cm  $\mu$  contains the horizontal and vertical structure functions (empirical)

$$\mu = \left(1 + \frac{\Delta L}{L_{\chi}}\right) \exp\left(-\frac{d}{L_{\chi}}\right) \exp\left(-\left(\frac{\Delta Z}{L_{Z}}\right)^{2}\right) \text{ , } L_{\chi} = 55 \text{ km , } L_{Z} = 800 \text{ m}$$

As used by ECMWF in the operational snow analysis.

- Surface only (offline) simulations with the ECMWF land surface scheme **HTESSEL** and river routing with **CaMa-Flood**;
  - Driven by ERA-Interim + MSWEP (precipitation) for the period 2000-2013 globally at 0.25x0.25
- Open loop simulation, i.e. no data assimilation (OL)
- Data assimilation (DA)
  - Sequential, 24h window, daily observations of snow depth from GHCN (no time-stamp), first guess and analysis at 00 UTC;
- Independent validation using satellite snow cover (IMS, 4 km) and river discharge from GRDC;



#### Snow depth validation



Clear improvement of snow depth with DA (expected !)



## Snow cover & River discharge

|             | Discharge<br>Correlation |      | Discharge<br>Percent Bias |       | Snow cover<br>Correlation |      |
|-------------|--------------------------|------|---------------------------|-------|---------------------------|------|
| Basin       | OL                       | DA   | OL                        | DA    | OL                        | DA   |
| Amur        | 0.85                     | 0.77 | -15                       | -22.6 | 0.66                      | 0.71 |
| Yenisey     | 0.87                     | 0.85 | -19.3                     | -26.4 | 0.57                      | 0.62 |
| Ob          | 0.92                     | 0.92 | -8.3                      | -10.9 | 0.65                      | 0.72 |
| Volga       | 0.67                     | 0.73 | -17.8                     | -13.4 | 0.57                      | 0.64 |
| Colorado    | 0.33                     | 0.23 | 35.1                      | 158.3 | 0.78                      | 0.86 |
| Columbia    | 0.8                      | 0.82 | 20.2                      | 48.8  | 0.7                       | 0.75 |
| Mackenzie   | 0.82                     | 0.83 | -15.1                     | -20.2 | 0.6                       | 0.62 |
| Yukon       | 0.81                     | 0.78 | -1.5                      | -8.9  | 0.51                      | 0.6  |
| Mississippi | 0.82                     | 0.78 | -35.2                     | -31.8 | 0.75                      | 0.82 |
| Nelson      | 0.46                     | 0.29 | -44.6                     | -40.6 | 0.63                      | 0.71 |
| St Lawrence | 0.51                     | 0.53 | -25.8                     | -21.5 | 0.71                      | 0.76 |

- Improved snow cover (independent data);
- Mixed impact on river discharge, why ?



#### Water balance in the Ob basin





- DA adds snow in the accumulation period and removes snow in Spring
  - Late melting ?
  - Density errors?
  - The removed water is "gone" from the system;

- 2D OI of in-situ snow depth clearly improved snow depth and cover key variables for NWP;
- Water conservation is key element to guarantee consistence and added value of DA in downstream applications;
- 2D OI provides snow depth analysis : Model update could explore other methodologies, e.g. EKF enhance information propagation (e.g. via snow density and albedo);
- Surface-only land data assimilation is a very powerful tool; fast (2 days to simulate 10 years at 0.25x0.25); flexible integration of observations; development of components in python to quick proof of concept, etc.
- 2D OI is a very good methodology to merge in-situ surface observation with model background.
  - What about Precipitation ?
  - And satellite LST ?



#### Near-surface & precipitation analysis





## Near-surface & precipitation analysis



- 2D OI could be applied to merge the in-situ daily precipitation from raingauges with ERA5, providing a merged dataset (at any resolution), taking advantage of both model and observations:
  - Also provides an "automatic" quality control to station data
  - Long-term 1950- to real-time monitoring of precipitation
    - From climate studies to NWP LAM land initialization (e.g. as in MERRA2 – NASA reanalysis)
- Could be also applied to T2m and D2m (if there is + data then in synop as it was already included in ERA5).



# Land Surface Temperature

- LST is a crucial variable linking surface to the atmosphere (via turbulent exchanges & radiative transfer);
- Probably the best observed surface variable from satellite (resolution and temporal frequency);
- But not assimilated !



- Model is too far away from observations:
  - Need to understand why and if it can be improved;
- Instantaneous and local information challenging for data assimilation

# Frederico's Poster. FCT funded project 2018-2021, collaboration with IPMA LandSAF (Isabel, João, Sofia)

