

Edição IPMA Rua C – Aeroporto de Lisboa 1749-007 LISBOA Portugal

> Edição Digital Conceição Almeida

Capa Anabela Farinha / Conceição Almeida

Disponíveis no sitio web do IPMA http://ipma.pt/pt/publicacoes/index.jsp

Todos os direitos reservados

Referência Bibliográfica

Marques, V., Silva, A., Angélico, M.M., Soares, E., 2013. Relatório da Campanha "Campanha de Rastreio Acústico PNAB – PELAGO13". *Relatórios de Campanha*, 24p. (http://ipma.pt)

RELATÓRIO DE CAMPANHA (ACÚSTICA E PESCAS)

CAMPANHA DE RASTREIO ACÚSTICO "PELAGO - 2013" SÉRIE PNAB/DCF – PELAGO (PRIMAVERA)

RESUMO

A estimação de abundância das espécies alvo, sardinha e biqueirão, mostra uma redução da sua biomassa em toda a área.

A abundância de sardinha estimada foi a mais baixa de toda a série temporal, com especial relevo para a zona Ocidental Norte (OCN), com uma biomassa de apenas 9 mil toneladas. Para a sardinha, a idade 1 foi predominante em toda a área, embora com baixa abundância, o que indica um fraco recrutamento em 2012.

O biqueirão sofreu uma grande redução de abundância em toda a costa Oeste. Pelo contrário, na costa Sul, observou-se uma recuperação de biomassa em relação à última campanha, realizada em2011. A idade 1 foi predominante para o biqueirão na zona Norte, enquanto que a idade 2 foi a idade predominante para a zona sul (Algarve e Cádis).

Em 2013 os ovos de sardinha foram mais abundantes que em 2011 e 2010 e a área de desova também mais alargada comparativamente com as campanhas mais recentes, embora as densidades tenham sido inferiores às observadas durante o período 2007-2009 quando se registaram alguns dos valores mais elevados da série histórica.

A distribuição espacial dos ovos de sardinha está em concordância com a distribuição da energia acústica obtida para a sardinha. A área de maior abundância de ovos coincide também com as maiores concentrações de cardumes encontrados, no promontório da Estremadura, a sul de Peniche.

A campanha PELAGO em 2013 teve início um mês mais tarde do que o previsto e teve uma duração superior ao inicialmente planeado devido a condições de mar adversas na zona norte. Embora o rastreio acústico tenha decorrido com algumas interrupções quando este foi efectuado as condições de mar foram boas e desta forma os resultados são considerados comparáveis com os obtidos em outras campanhas.

INTRODUÇÃO

Este relatório apresenta os principais resultados da campanha acústica e de pesca realizada a bordo do NI "Noruega" na primavera de 2013. A campanha teve como principais objetivos a estimação da distribuição espacial e da abundância, por classes de comprimento e grupos de idade, da sardinha (*Sardina pilchardus*) e biqueirão (*Engraulis encrasicolus*), presentes nas plataformas continental portuguesa e golfo de Cádis.

Como objetivo secundário foi estimada a distribuição espacial e a abundância de outros pequenos pelágicos relativamente abundantes na área do rastreio acústico, como sejam a cavala (*Scomber colias*), o carapau (*Trachurus trachurus*) e a boga (*Boops boops*).

Foi também monitorizada a distribuição dos ovos e larvas de sardinha e biqueirão e a temperatura, salinidade e fluorescência da camada sub-superficial da água do mar, ao longo do percurso de rastreio acústico.

Esta campanha foi parcialmente custeada com fundos Europeus (DCF-Data Collection Framework).

MATERIAL E MÉTODOS

A execução do rastreio acústico e a estimação de abundância seguiram as metodologias adoptadas pelo grupo de trabalho de acústica e ovos (WGACEGG) do ICES. A área rastreada, limitada pelas batimétricas dos 20 m e 200 m, foi coberta pelo navio usando uma grelha de radiais paralelas entre si e perpendiculares à costa, distanciadas de 8 milhas náuticas. A velocidade média do navio foi de 9-10 Nós. A energia acústica foi integrada com intervalo de 1 milha náutica. Os dados acústicos foram obtidos usando uma sonda hidroacústica científica Simrad EK500, com a frequência de 38KHz. Estes dados foram guardados e processados posteriormente usando o software Movies+ (Weill *et al.*, 1993) instalado num PC. No inicio da campanha foi efetuada uma calibração à sonda hidroacústica usando uma esfera padrão, seguindo os procedimentos standard (Foote *et al.*, 1981). Para efeitos de comparação de resultados, a área rastreada foi dividida, como habitualmente em 4 sub áreas: OCN (de Caminha à Nazaré), OCS (da Nazaré ao cabo de S. Vicente), Algarve (S. Vicente a V. R. de Santo António) e Cádis (de V. R. santo António ao Cabo Trafalgar).

Para a recolha de dados biológicos das espécies em estudo, foi usada principalmente uma rede de arrasto pelágico e algumas vezes uma rede de arrasto pelo fundo. As amostras das operações de pesca foram também usadas para a identificação das espécies pelágicas nos ecogramas e para dividir a energia acústica obtida pela sonda, por espécie e por classes de comprimento, dentro de cada espécie. As operações de pesca foram efetuadas de acordo com a informação dos ecogramas. Em algumas áreas não foi possível pescar devido à presença de artes de pesca artesanal. Durante a amostragem biológica foram recolhidos otólitos de sardinha e biqueirão que permitiram a leitura de idades dos indivíduos para se obterem chaves de comprimento-idade. Para cada espécie alvo foram calculadas abundâncias por grupos de idade, a partir da estimação de abundância por classes de comprimento.

Os ovos e larvas de peixe foram recolhidos através de um amostrador contínuo da água subsuperficial, bombeada a 3 metros de profundidade (sistema CUFES — Continuos Underway Fish Egg Sampler), equipado com uma rede de 335 µm de malha. As amostras de plâncton são recolhidas a cada 3 milhas náuticas durante o percurso de rastreio acústico. Os dados de temperatura, salinidade e fluorescência da água bombeada são registados por sensores associados ao sistema CUFES e gravados conjuntamente com a informação GPS do navio através do programa EDAS. A água superficial bombeada pelo sistema CUFES foi também utilizada para leitura de pH, com uma sonda laboratorial, imediatamente após a colheita, e para preservação de amostras para determinação de alcalinidade e nutrientes, em laboratório (nitratos, NO3-+NO2-, nitritos, NO2-, amonia, NH4+, fosfatos, PO43-, e silicatos, Si(OH)4-). Durante o período da noite foram efectuados perfis de CTDF e colheitas de plâncton (redes CalVET e Bongo) ao longo de alguns dos transectos de rastreio acústico. Censos de aves e mamíferos foram realizados durante os transectos do período diurno por elementos da SPEA.

RESULTADOS

PESCA

Durante a campanha foram realizadas 26 estações de pesca (figura 1); destas estações, 17 possuíam amostra significativa de sardinha e 8 possuíam amostra de biqueirão. As espécies

pelágicas mais abundantes, amostradas na pesca foram a cavala o carapau e a boga. A sardinha encontrava-se normalmente misturada com estas espécies. Na costa sul encontrouse também, com alguma abundância o carapau amarelo ((*Trachurus mediterraneus*) e o carapau negrão (*Trachurus picturatus*). O biqueirão encontrou-se principalmente no golfo de Cádiz e no sotavento algarvio.

DISTRIBUIÇÃO ESPACIAL

Sardinha

A sardinha distribuía-se ao longo de toda a costa, mas em pequenas quantidades. Os maiores cardumes de sardinha foram detetados na zona de Peniche (figura 1).

Biqueirão

O biqueirão distribuía-se sobretudo no sotavento algarvio e no golfo de Cádis, partilhando o espaço com outras espécies pelágicas (figura 2). Na restante área rastreada, apenas se encontrou a sul da Figueira da Foz, mas em pequena quantidade.

Cavala

A cavala distribuía-se na zona OCN ao longo da costa mas com pouca abundância. Na zona OCS foi bastante abundante na zona de Lisboa e ao largo de Setúbal e Península de Tróia. No Algarve e Cádis foi relativamente abundante, distribuindo-se o longo de toda a costa (figura 7).

Carapau

O carapau distribuía-se ao longo de toda a costa, mas foi principalmente abundante na zona Norte, desde Caminha até ao sul de Aveiro. Encontrou-se também na costa SW ao sul de Sines e ainda no Algarve e Golfo de Cádis (figura 8).

Boga

A distribuição da boga teve pouca expressão na zona OCN. Na zona OCS foi particularmente abundante ao largo de Peniche e em toda a costa SW a sul de Setúbal. Foi muito abundante no Algarve especialmente na zona de Barlavento, e ainda ao largo de Cádis (figura 9).

ABUNDÂNCIA

Sardinha

A biomassa de sardinha, estimada para a costa portuguesa, foi de 91 mil toneladas, correspondendo a 3797 milhões de indivíduos, sendo o valor mais baixo da série histórica de campanhas. (figura 3). Na zona OCN a biomassa estimada foi extremamente baixa (9 mil toneladas; 254 milhões de indivíduos). Na zona OCS foi mais abundante (72 mil toneladas; 1575 milhões de indivíduos), encontrando-se os maiores cardumes na zona de Peniche. No Algarve a sardinha encontrada foi escassa, tendo-se estimado 9 mil toneladas que correspondiam a 197 milhões de indivíduos. Na zona de Cádis a sardinha também não era muito abundante (21 mil toneladas; 493 milhões de indivíduos).

Biqueirão

A biomassa de biqueirão, estimada para a área total foi de 16 mil toneladas (1147 milhões de indivíduos) e encontrava-se principalmente em Cádis e no sotavento algarvio. Na campanha realizada em 2011, apenas se tinha encontrado biqueirão em quantidade apreciável na zona OCN (27 mil toneladas). Nesta zona a biomassa desceu para 4 mil toneladas.

Na área rastreada o biqueirão possuía entre 1 e 4 anos de idade, sendo a idade modal da distribuição 1 ano para a zona OCN e 2 anos para o Algarve e Cádis (figura 6).

Cavala

A maior parte da biomassa de cavala encontrava-se na zona OCS com 104 mil toneladas (figura 7). Na zona OCN apenas foram estimadas 4,7 mil toneladas. No Algarve estimaram-se 16 mil toneladas e em Cádis 55 mil toneladas. A distribuição de comprimentos foi unimodal na zona OCN e no Algarve com modas de 19 cm de comprimento em ambas as zonas. Na zona OCS e em Cádis, a estrutura de comprimentos apresentava de indivíduos maiores, sendo esta moda de 22 cm na OCS e de 24 cm em Cádis.

Carapau

A maior abundância de carapau encontrava-se na zona OCN, principalmente a norte de Aveiro, com uma biomassa estimada de quase 49 mil toneladas. Os indivíduos eram principalmente juvenis com um comprimento modal de 16 cm. Na zona OCS estimaram-se 8,5 mil toneladas, onde predominavam indivíduos juvenis com 15 cm de comprimento na moda principal da distribuição. No Algarve estimou-se uma biomassa de 4,5 mil toneladas de carapau essencialmente juvenil (moda 15 cm). Em Cádis a moda da distribuição encontrava-se nos 14 cm e a biomassa estimada foi de 5,7 mil toneladas. (figura 8)

Boga

Na zona OCN a boga teve pouca expressão, com apenas uma estimação de biomassa de 189 toneladas sendo constituída principalmente por indivíduos jovens (12 cm de moda). Nas zonas OCS e Algarve foi onde se observou a maior abundância de boga, com 26 mil toneladas e 22 mil toneladas respetivamente. A distribuição de comprimentos, nestas zonas foi bimodal, com modas no 14 cm e 19-20 cm. Em Cádis estimaram-se 8,7 mil toneladas de boga, com uma distribuição de comprimentos tri-modal, nos 13 cm, 18cm e 25 cm. (figura 9)

COMPOSIÇÃO DA ESTRUTURA DE COMPRIMENTOS E IDADES DA SARDINHA

Na Zona OCN a estrutura de comprimentos de sardinha foi unimodal (16 cm de moda), com os indivíduos considerados juvenis (comprimento total ≤ 16 cm) contribuindo com 51 % para a abundância nesta zona. Na zona OCS a distribuição de comprimentos foi claramente bimodal. Nesta zona 34% das sardinhas eram juvenis. No Algarve em Cádis os juvenis de sardinha representavam apenas 4% da abundância estimada para estas zonas.

A idade 1 foi predominante em todas as zonas, com exceção do Algarve.; contudo a abundância total das sardinhas com idade 1, que correspondem aos sobreviventes da coorte de 2012, é um décimo da abundância da coorte de 2004, ano em que houve um bom recrutamento de sardinha.

CARACTERIZAÇÃO AMBIENTAL

As semanas que precederam a campanha e a parte inicial desta foram caracterizadas por condições meteorológicas muito instáveis e com períodos de chuva abundante e ventos fortes de direção variável. As distribuições de temperatura, salinidade e fluorescência superficiais observadas (registos com os sensores associados ao sistema CUFES, figure 10) reflectiram bem as condições atmosféricas e de mar encontradas, tendo sido evidentes as descargas de água doce (e nutrientes) dos principais rios, que se estenderam-se sobre a plataforma continental, dando origem a abundantes massas fitoplanctónicas (proporcional à fluorescência) e zooplanctónicas (figuras 10, 11, 12). A temperatura da superfície da água do mar na região oeste, e em particular, na zona noroeste, foi mais baixa comparativamente com a registada em outras campanhas efectuadas na mesma época do ano sendo este padrão o resultado do arrefecimento provocado pelos ventos fortes que se fizeram sentir antes e durante a primeira metade da campanha. Já a costa sul, foi rastreada sob condições meteorológicas favoráveis e com temperaturas médias elevadas, e em consequência as massas de água observadas evidenciaram já padrões típicos de primavera, com temperaturas superficiais acima de 18oC e notória abundância de fito e zooplâncton, em particular, na zona mais costeira e associada às plumas dos rios, que ainda eram marcadas, especialmente no mapeamento de salinidade. A amostragem efectuada durante o período noturno (figuras 11 e 12), complementa a informação descrita para a superfície, sendo de notar a concordância nos padrões de distribuição dos volumes de plâncton à superfície e na coluna de água com valores superiores associados às plumas dos rios na zona noroeste e na Baía de Cádis.

Com o objectivo de descrever a distribuição dos nutrientes essenciais para a produtividade nas águas sobre a plataforma continental e despistar eventuais sinais de acidificação foram efectuadas análises em amostras de água recolhidas ao longo dos transectos de rastreio acústico; observações com esta resolução espacial foram conduzidas pela primeira vez e não existem por isso resultados similares para comparação. Os mapas da figura 13 mostram nitidamente que as águas com influência de escorrência continental exibem composição distinta das restantes zonas. O pH foi inferior a 7 junto à foz dos rios Tejo e Minho e nas regiões adjacentes às rias de Aveiro e Formosa. Valores de alcalinidade total mais elevados foram observados junto à Lagoa de Óbidos e rio Douro. Na região noroeste as águas com origem fluvial, referidas atrás, foram certamente determinantes para os padrões de concentração de nutrientes observados que evidenciaram uma distribuição, bastante costeira, seguindo a pluma dos rios (figura 10); valores elevados de fluorescência (~fitoplâncton) foram observados nas zonas limitrofes das manchas de maior concentração de nutrientes.

DISTRIBUIÇÃO DOS OVOS DE SARDINHA

A área de desova de sardinha em 2013 foi mais alargada do que a observada em 2011 e a percentagem de amostras CUFES com ovos desta espécie atingiu os 63% enquanto no período 2010-2011 foi em redor de 30-40%. No entanto as condições oceanográficas encontradas durante a presente campanha podem ter provocado advecção dos ovos o que poderá ter também em parte contribuído para alguma expansão na área de distribuição (figura 14), embora haja também a assinalar um aumento na densidade dos ovos observada entre 2011 e

2013. Durante a campanha PELAGO13 as zonas com maiores concentrações de ovos de sardinha observaram-se a sul do Canhão da Nazaré, em particular entre os cabos Carvoeiro e de Sines mas também na costa sul na zona mais interior da Baía de Cádis. Sobre a plataforma noroeste observaram-se baixas densidades e uma distribuição essencialmente costeira. A distribuição dos ovos de sardinha acompanhou razoavelmente os padrões de distribuição de energia acústica atribuída à espécie (figura 2), com excepção da zona adjacente ao rio Sado, e foi particularmente coincidente nas águas do Promontório da Estremadura onde as densidades mais elevadas de ovos e cardumes de sardinha foram detectadas.

Ovos de sardinha e biqueirão co-ocorreram, com elevadas abundâncias nas águas costeiras de Cadiz, e também junto a Lisboa, embora nesta zona com menor densidade. No entanto, no global, 85% dos ovos de sardinha foram recolhidos na costa oeste enquanto os ovos de biqueirão foram maioritariamente (82%) observados na costa sul. No global, em toda a área rastreada sobre a plataforma continental, apenas em 45 estações de amostragem CUFES, num total de 430, não foram recolhidos ovos de peixes; 27% dos ovos recolhidos foram de sardinha e 27% de biqueirão. A distribuição de larvas de clupeiformes (sardinha e biqueirão, não identificadas a nível específico) seguiram padrões semelhantes ao mapeado para os ovos com excepção da região entre o rio Sado e o cabo de Sines.

AVES E MAMÍFEROS MARINHOS

Os mapas apresentados na figura 15 mostram as observações de aves e mamíferos efectuadas na zona noroeste. Na zona amostrada as maiores densidades de aves marinhas foram registadas entre o Douro e Aveiro, onde era evidente a pluma de água menos salina e elevadas abundâncias de plâncton e também cardumes de peixes pelágicos, embora na zona mais costeira.

BIBLIOGRAFIA

Checkley, D. M. Jr; P. B. Ortner; L. R. Settle and S. R. Cummings. 1997. A continuous, underway, fish egg sampler. *Fisheries Oceanography* 6 (2): 58-73.

Foote, K. G., Knudsen, H. P., Vestnes, G., Brede, R., Nielsen, R. L., 1981. Improved Calibration of Hydroacoustic Equipment with Copper Sphere. *ICES, CM* 1981/B:20, 18p.

ICES. 2009. Report of the Working Group on Acoustic and Egg Surveys for Sardine and Anchovy in ICES Areas VIII and IX (WGACEGG), 16-20 November 2009, Lisbon, Portugal. *ICES CM* 2009/LRC: 20. 177pp.

Weill, A., Scalabrin, C. and Diner, N., 1993. MOVIESB: An acoustic detection description software. Application to shoal species classification. *Aquatic Living Resources* 6: 255-267.

Tabela 1 - Sardinha: Abundância (milhões) por zona, Portugal e área total, para as campanhas acústicas realizadas entre Maio 1995 e Abril de 2013.

Campanha	OCN	ocs	Algarve	Cádis	Portugal	Área Total
SAR95MAI	105	133	133	168	371	539
SAR96FEV	27	118	106	154	251	405
SAR96JUL	154	165	108	82	427	509
SAR97MAR	153	152	96	107	401	508
SAR97NOV	87	135	106	-	328	-
SAR98MAR	191	131	65	97	387	484
SAR98NOV	151	137	95	238	383	621
SAR99MAR	158	35	39	191	232	423
SAR99NOV	89	32	92	58	213	271
SAR00MAR	98	90	59	122 (65%)	247	370 *
SAR00NOV	555	43	31	81	629	710
SAR01MAR	333	40	24	88	408	496
SAR01NOV	281	147	55	292	483	775
SAR02MAR	233	96	105	181	434	615
SAR03FEV	153	145	60	73	359	432
SAR03NOV	95	90**	37	-	222	-
SAR04JUN	240	60	39	-	339	-
SAR05ABR	286	199	62	40	547	587
SAR05NOV	458	34	12	-	504	-
SAR06ABR	370	138	40	89	548	637
SAR06NOV	257	69	27	58	353	411
PELAGO07	215	89	40	107	344	452
SAR07NOV	258	114**	11***	133	384	517
PELAGO08	170	13	26	35	209	244
SAR08OUT	121	36	0.6	149	158	307
PELAGO09	112	84	14	84	210	294
PELAGO10	125	43	11	26	179	205
PELAGO11	90	15	20	2	125	127
PELAGO13	9	72	9	21	90	112

^{*} apenas 65% da zona de Cádis foi coberta ** a área entre os cabos Espichel e S. Vicente não foi coberta.

^{***} parte da zona do Algarve não foi coberta.

Tabela 2 – Sardinha: Biomassa (milhares de toneladas) por zona, Portugal e área total, para as campanhas acústicas realizadas entre Maio 1995 e Abril de 2013.

Campanha	OCN	ocs	Algarve	Cádis	Portugal	Área Total
SAR95MAI	105	133	133	168	371	539
SAR96FEV	27	118	106	154	251	405
SAR96JUL	154	165	108	82	427	509
SAR97MAR	153	152	96	107	401	508
SAR97NOV	87	135	106	-	328	-
SAR98MAR	191	131	65	97	387	484
SAR98NOV	151	137	95	238	383	621
SAR99MAR	158	35	39	191	232	423
SAR99NOV	89	32	92	58	213	271
SAR00MAR	98	90	59	122 (65%)	247	370 *
SAR00NOV	555	43	31	81	629	710
SAR01MAR	333	40	24	88	408	496
SAR01NOV	281	147	55	292	483	775
SAR02MAR	233	96	105	181	434	615
SAR03FEV	153	145	60	73	359	432
SAR03NOV	95	90**	37	-	222	-
SAR04JUN	240	60	39	-	339	-
SAR05ABR	286	199	62	40	547	587
SAR05NOV	458	34	12	-	504	-
SAR06ABR	370	138	40	89	548	637
SAR06NOV	257	69	27	58	353	411
PELAGO07	215	89	40	107	344	452
SAR07NOV	258	114**	11***	133	384	517
PELAGO08	170	13	26	35	209	244
SAR08OUT	121	36	0.6	149	158	307
PELAGO09	112	84	14	84	210	294
PELAGO10	125	43	11	26	179	205
PELAGO11	90	15	20	2	125	127
PELAGO13	9	72	9	21	90	112

^{*} apenas 65% da zona de Cádis foi coberta

^{**} a área entre os cabos Espichel e S. Vicente não foi coberta.

^{***} parte da zona do Algarve não foi coberta.

Tabela 3 – Biqueirão: biomassa estimada (toneladas) para a costa Oeste, costa Sul e para a área total.

Campanha	Oeste	Sul	TOTAL
Abril 2013	3955	12700	16655
Abril 2011	27050	0	27050
Abril 2010	1188	7395	8583
Abril 2009	2000	24800	26800
Abril 2008	5500	34200	39700
Abril 2007	1945	38020	39965
Abril 2006	0	24082	24082
Abril 2005	1062	14041	15103
Março 2002	1542	21335	22877
Março 2001	368	24913	25281
Março 1999	596	24763	25359

Tabela 4 – Biqueirão: abundância estimada (milhar de milhão), para a costa Oeste, costa Sul e área total.

Campanha	Oeste	Sul	TOTAL
Abril 2013	251	896	1147
Abril 2011	1558	0	1558
Abril 2010	62	963	1025
Abril2009	127	2069	2196
Abril 2008	321	2032	2353
Abril 2007	103	3144	3247
Abril 2006	0	2247	2247
Abril 2005	59	1306	1365
Março 2002	178	3823	4001
Março 2001	38	2700	2738
Março 1999	37	2079	2116

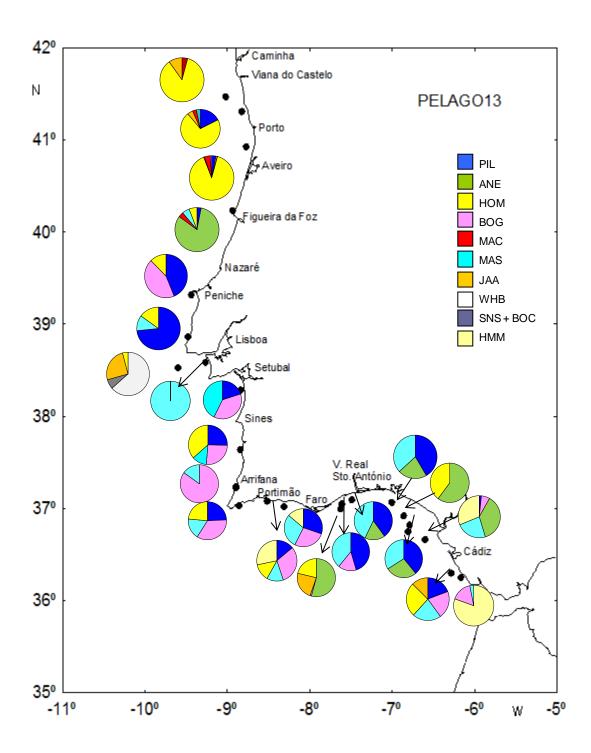


Figura 1 — Posição das estações de pesca realizadas e proporção, em número, das espécies capturadas em cada arrasto de pesca. Na legenda figura o código FAO das espécies: PIL — sardinha; ANE — biqueirão; HOM — carapau; BOG — boga; MAC — sarda; MAS — cavala; JAA — carapau negrão; WHB — verdinho; SNS — apara-lápis; BOC — mini-saia; HMM — carapau amarelo.

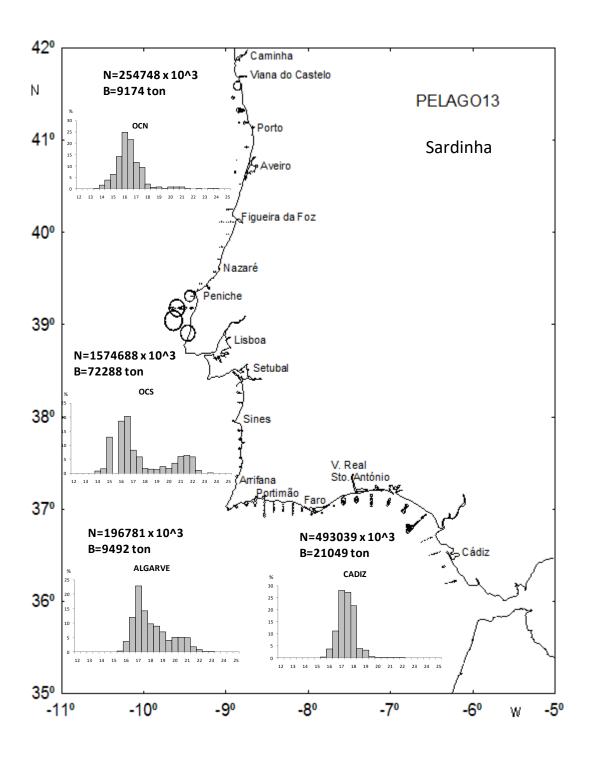


Figura 2 — Distribuição espacial da energia acústica atribuída a sardinha. A área dos círculos é proporcional à densidade acústica ($S_A \, m^2/nm^2$). Abundância e biomassa de sardinha e composição de comprimentos, em cada zona.

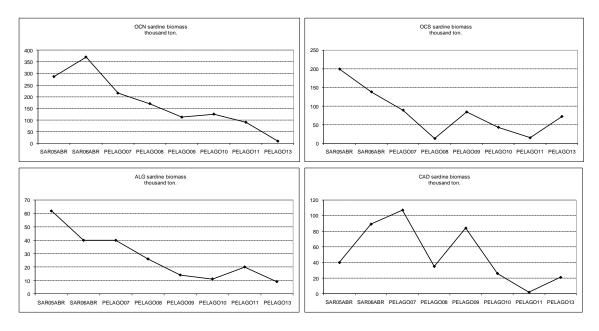


Figura 3 – Evolução da biomassa de sardinha em cada zona, ao longo da série de campanhas acústicas de primavera, desde 2005.

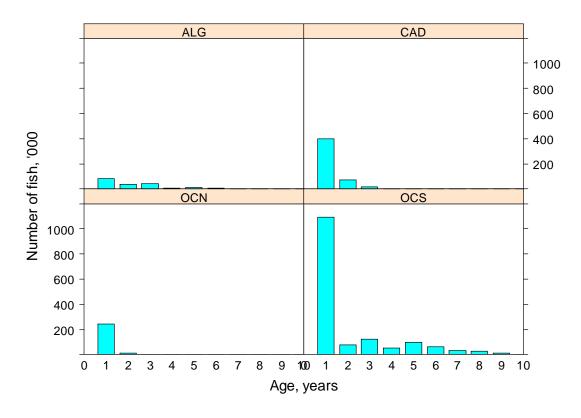


Figura 4 – Abundância de sardinha (milhares) por grupos de idade, em cada zona.

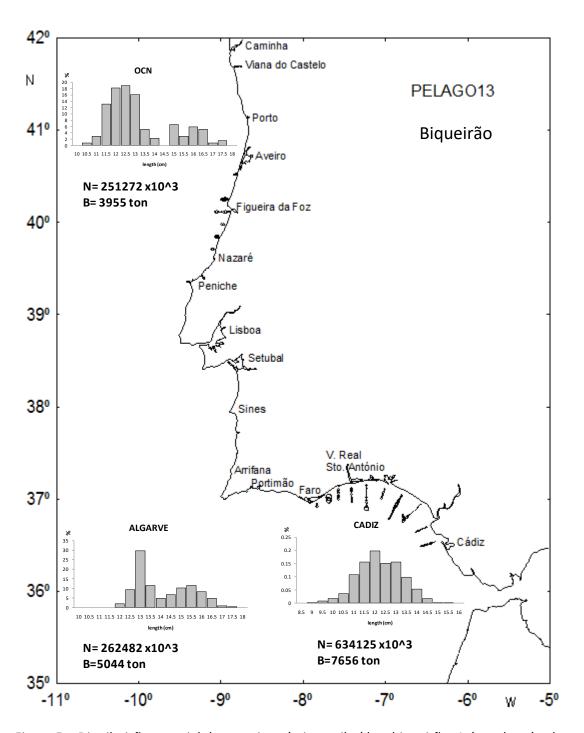


Figura 5 — Distribuição espacial da energia acústica atribuída a biqueirão. A área dos círculos é proporcional à densidade acústica ($S_A m^2/nm^2$). Abundância e biomassa de biqueirão e composição de comprimentos, em cada zona.

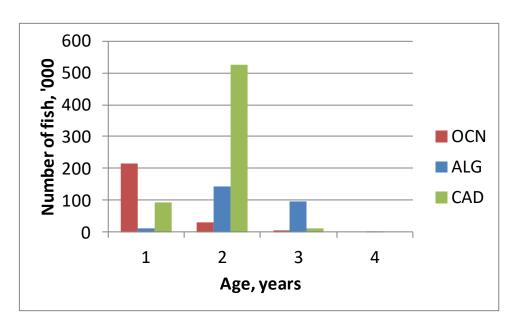


Figura 6 – Abundância de biqueirão (milhares), por grupos de idade, em cada zona.

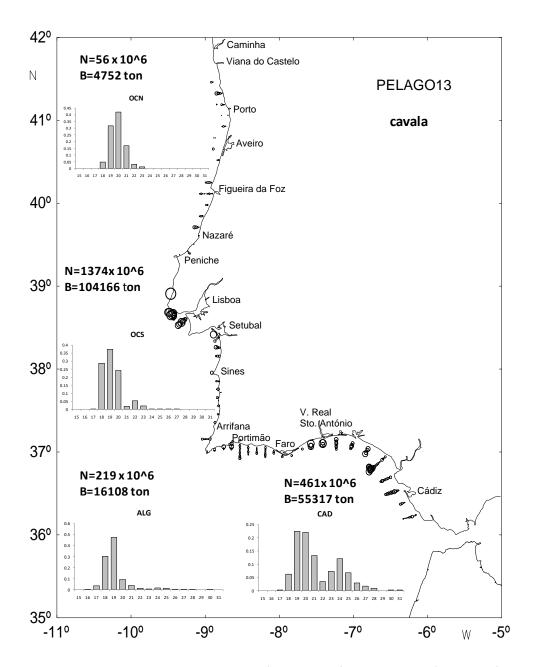


Figura 7 - Distribuição espacial da energia acústica atribuída a cavala. A área dos círculos é proporcional à densidade acústica $(S_A \, m^2/nm^2)$. Abundância e biomassa de cavala e composição de comprimentos, em cada zona.

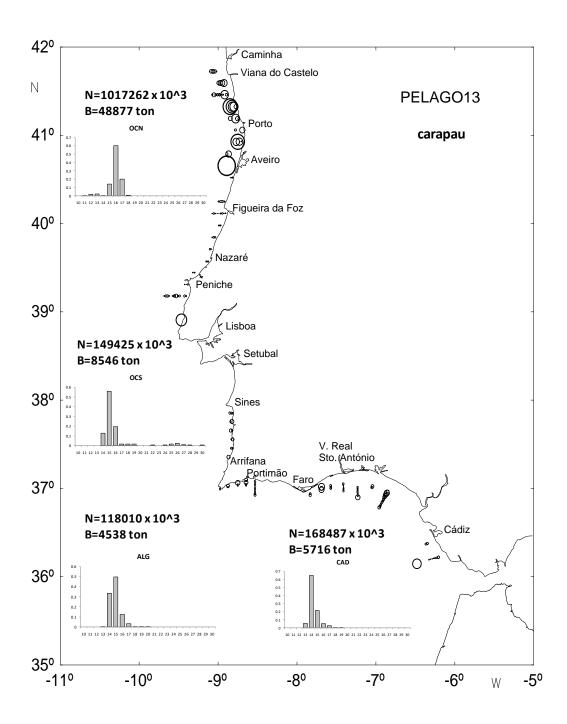


Figura 8 - Distribuição espacial da energia acústica atribuída a carapau. A área dos círculos é proporcional à densidade acústica (S_A m²/nm²). Abundância e biomassa de carapau e composição de comprimentos, em cada zona.

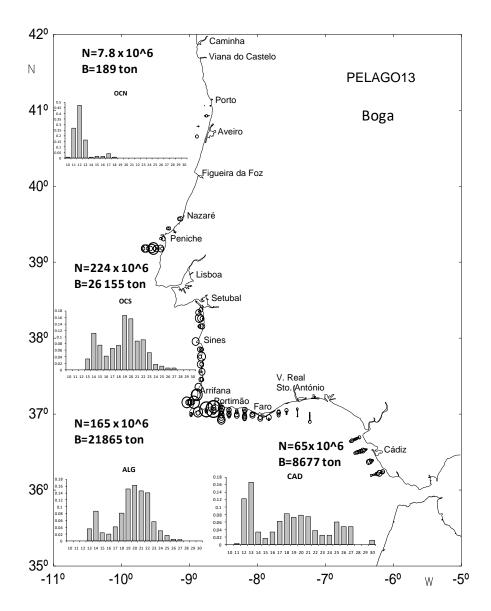


Figura 9 - Distribuição espacial da energia acústica atribuída a boga. A área dos círculos é proporcional à densidade acústica ($S_A \, m^2/nm^2$). Abundância e biomassa de boga e composição de comprimentos, em cada zona.

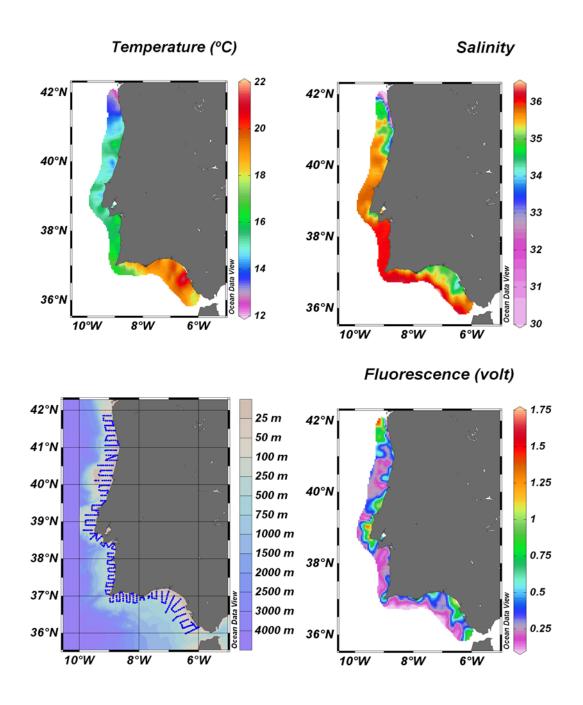


Figura 10 – Distribuição da temperatura (superior esquerda), salinidade (superior direita) e fluorescência (inferior direita), obtida pela CUFES. A imagem inferior esquerda mostra a localização das estações CUFES.

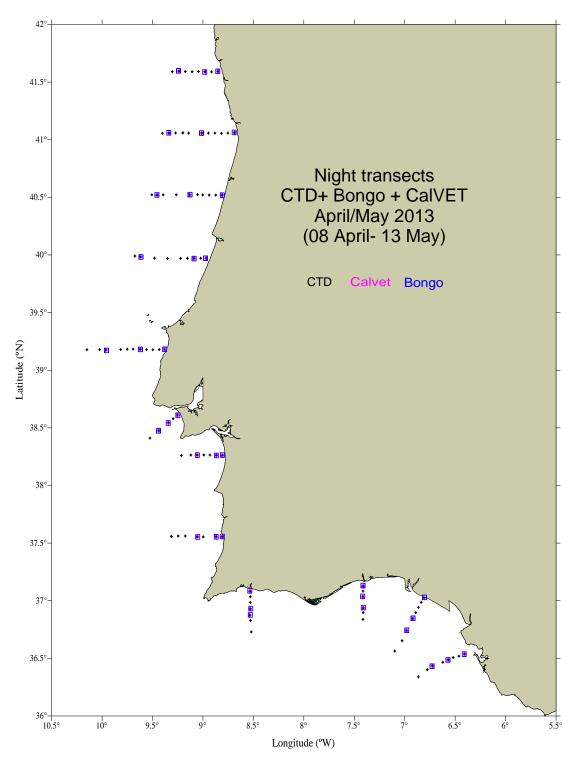


Figura 11 – Localização das estações de amostragem para hidrografia (perfis de CTDF) e colheitas de zooplankton (redes BONGO e CalVET) efectuadas no período noturno.

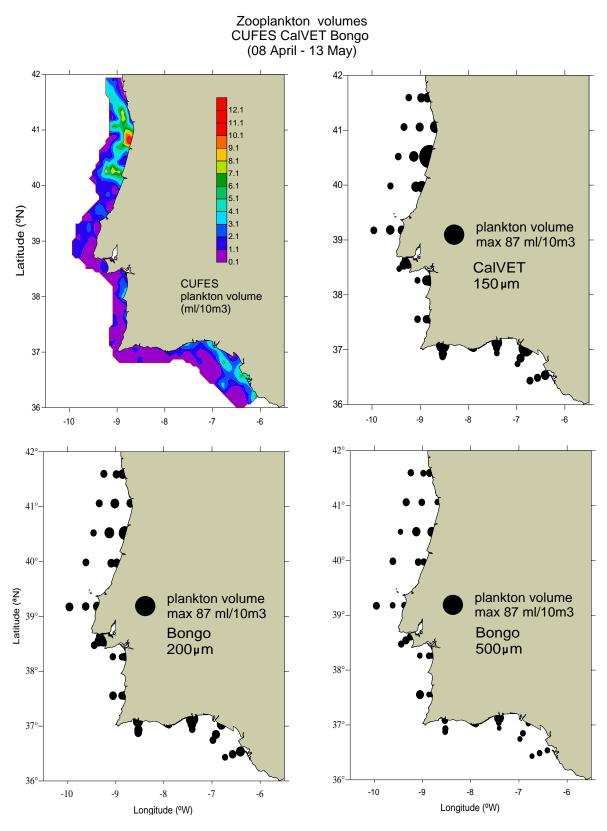


Figura 12 — Volumes de zooplâncton obtidos com os sistemas CUFES, painel no topo à esquerda, CalVET (150 μm), painel no topo à direita, Bongo (200 μm), painel embaixo à esquerda e Bongo (500 μm), painel embaixo à direita. A amostragem CUFES decorreu durante o dia enquanto as colheitas com as redes Bongo e CalVET foram realizadas durante a noite.

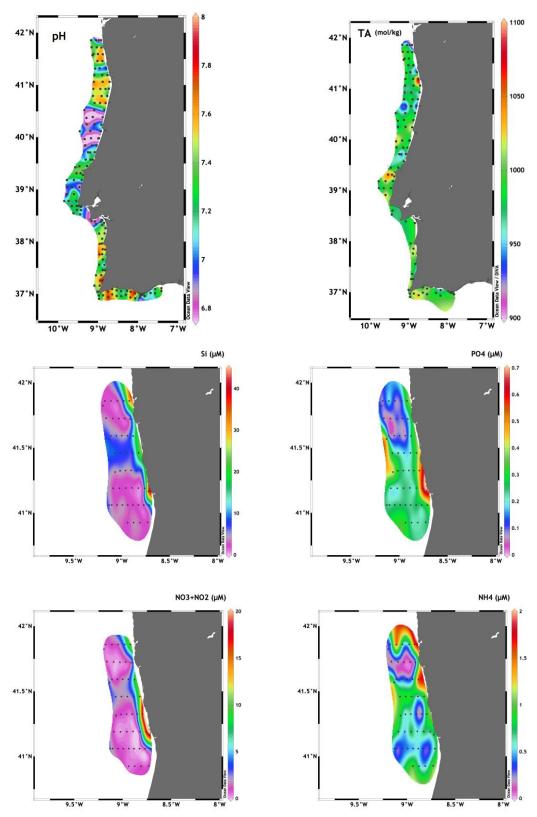


Figura 13 — Análises químicas efectuadas em águas de superfície, distribuições de pH, alcalinidade e nutrientes. pH, painel no topo à esquerda; alcalinidade, painel no topo à direita; silicatos, painel a meio à esquerda; fosfatos, painel a meio à direita; nitrato+nitrito, painel em baixo à esquerda; amónia, painel em baixo à direita.

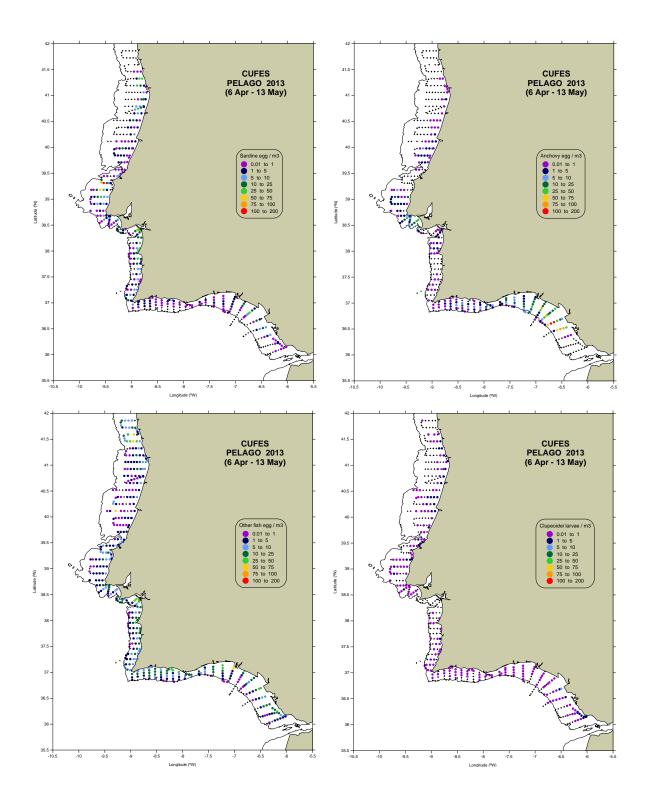


Figure 14 — Distribuições de ovos e larvas de peixes obtidas através de amostragem contínua com o sistema CUFES. Ovos de sardinha, painel no topo à esquerda; ovos de biqueirão, painel no topo à direita; ovos de outras espécies, painel em baixo à esquerda; larvas de clupeiformes, painel em baixo à direita.

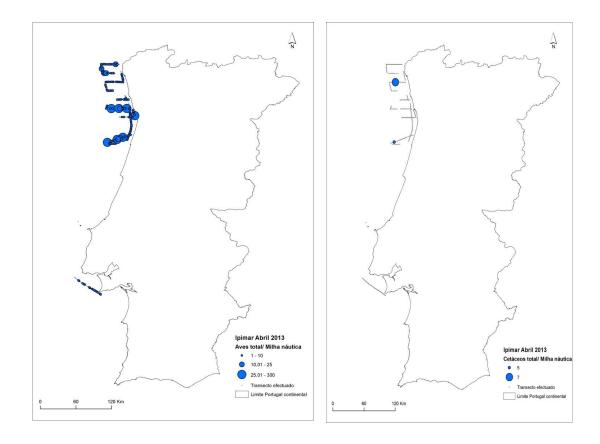


Figure 15 – Distribuição de aves e mamíferos marinhos (números por milha náutica) na costa noroeste (observações efectuadas pela SPEA).

