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Fundamentals of Data Assimilation (DA)

Data assimilation is a mathematical discipline that seeks to optimally combine
theoretical (background or prior) estimations or knowledge (𝑿𝒃) of the state 𝑿

of a (numerical or qualitative) model (simulating a certain system) with a 
packet 𝒀 of observations, related to 𝑿 , through a certain (complex or simple, 

fixed or varying) observation operator 𝑯 𝑿 .

Example: 𝒀= Remote sensing radiative data ; 𝑿 = 3D, time-varying state vector 
of a meteorological forecasting physical model; 𝑯 𝑿 = Radiative Transfer 

Model; 𝑿𝒃 = Forecast valid now, issued from yesterday; 

( ) oH= +Y X ε

b b= +X X ε



Fundamentals of Data Assimilation (DA)

The Data Assimilation goal is thus to obtain (from data) an improved (or 
posterior) estimation (𝑿𝒂) of the model state (the analysis), optimizing a 

certain statistical criterium by taking into account the assumed probabilistic 
distributions 𝝆𝟎 𝜺𝒐 , 𝝆𝒃 𝜺𝒃 of the different errors, coming, both from the 
prior estimations (due to model errors, truncation, physics etc.) and from 

observations (instrumental calibration, spatio-temporal representation, spatial 
colocation, clock errors). Furthermore, the assumed probability distribution 

errors can eventually be imperfect due to: 1)wrong pdf  choice; 2)false 
assumption of errors independence, 3)error biases, 4)under (or over) 

quantification of error variances and of error extremes, 5)probability of 
observation rejection badly assessed.
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Data: Observation
+    background

( ) oH= +Y X ε

b b= +X X ε

pdfs of observation
and background

errors
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The posterior  Bayesian-based probability density 
function (pdf) is a pdf conditioned to data
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When errors are statistically independent and climatic variance is
much larger than data error’s variances, the posterior pdf comes as:
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The posterior state according to different criteria

The Most-likely (ML) state: arg max [ ( )]ML post= UX U

The Median of the posterior pdf (MED): (0.5)
postMED Q=X

The Best Linear Unbiased Estimator (BLUE):
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The Minimum Mean Square Error estimator (MMSE): 
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The choice of errors’ pdfs make a difference in the analysis

Therefore,

How may we decide if the chosen pdf of errors is correct or not?

Answer: By collecting statistics of the innovations (differences
between the observations and backgrouds



The innovation is expressed as a difference between errors. 
When independent, Its variance is the sum of error variances.
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The Gaussianity of errors may be tested by computing the skewness 
(s) and kurtosis excess (k’) of innovations D. 

Under Gaussian pdfs , s=k’=0. 
s and k’ of D are shared among the skewnesses and kurtoses of OBS 

and BG errors as:
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Histogram and pdf fit of the Innovations of Brightness
Temperature. Bg taken from ECMWF forecasts. Note the 

negatively skewed, leptokurtic distribution of innovations.

Example of 
non-Gaussian 
innovations



Innovations are non-Gaussian 
and that Non-Gaussianity may
come from one or from both

errors. Taking one of the errors
to be Gaussian, its variance

fraction admits an upper
bound (in Fig.) for each value

of the skewness  sd and 
kurtosis kd of innovations. 
Therefore non-Gaussianity
must be accomodated by a 
minimum of error variance
which is a constraint for the 

origin of the Non-Gaussianity.
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After deciding the NGty origin, and computing the 
4 leading central error moments: =0, , s and k, 

consistent with innovation statistics, we must 
build the correspondent Maximum Entropy (ME) 

pdf. A non-linear  minimization problem on 
Lagrange multipliers is then solved



ME pdfs of observation Gaussian 
errors  and  background non-
Gaussian errors obtained by 
prescribing consistent error 

statistics , s, k. Note the positive 
skewness of background errors. 
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The BLUE and the non-Gaussian MMSE Bayesian
estimator for a prescribed bg and innovation d and error 

pdfs o, b writes as:

The impact of non-Gaussian errors is measured by the 
mean square difference between MMSE and BLUE,  

normalized by the a-posteriori BLUE’s error variance in 
terms of the:



Scattered plot of the differences: BLUE-BG (black, left), MMSE-BG 
(red,left) and  MMSE-BLUE (black,right) as a function of the 

innovation (5709 data). The SCORE=0.27 represents a 27% potential 
reduction of the mean square analysis error, specially when BG>>OBS 

(highly negative innovations)
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For observation and
background errors of equal

variance and innovations’ non-
Gaussianity coming only from 
one the errors, the SCORE (in 
Fig.) tends to mostly increase

with  assymmetry (skewness) of 
the assumed non-Gaussian 

error.

What makes a large SCORE?





Conclusions:
1 - Data assimilation executed with non-Gaussian distributed errors 
may lead to different analysis (posterior sates) as a function of the 

chosen optimality criterium (ML, MED, BLUE,MMSE)

2 -The assumption of error’s Gaussianity may be tested by computing 
high-order statistics of the innovations

3 - The correction of the prescribed pdf of errors in the observation 
space may be executed by attributing consistent values of skewness 

and kurtosis to errors which are consistent to those of the 
innovations. The least committing pdf is that obtained by the 

Maximum Entropy method constrained by the imposed moments. 

4 -The potential reduction of the analysis mean square error comes 
mainly from the skewness of errors and may be large for some 

observables and extreme innovations


