Numerical weather prediction in Portugal 2021

The role of orography and SST on shaping coastal surface wind, in the Canary upwelling ecosystem

José Alves
Motivation

Evaluate coastal wind shape is relevant because …

Weaker coastal wind (wind curl) \rightarrow Ekman pumping

Northly wind right at the coast \rightarrow Offshore Ekman transport
Motivation

Global reanalysis and satellite products do not realistically represent the wind drop-off.

(Renault et al., 2016)
Objectives

Assess coastal wind shape in the Canary upwelling ecosystem.

The role of coastal orography, coastline shape and SST.
Simulation's set-up

ROMS 2014-2018 → WRF-ROMS 2019

Initial and boundary conditions
- ERA5
- GLORYS 12V1

Uwind, Vwind, Patm, RH, Tair, Precip, Swrad, Lwrad

SST

Variables exchanged every 30 min

WRF

ROMS

Tides
Computational domains

- **d01** 27 km - WRF
- **d02** 9 km - WRF and ROMS
- **d03** 3 km - WRF and ROMS

Mercator projection

Bathymetry
- GEBCO 15 arc-second

Topography
- SRTM 3 arc-second
Observed satellite data

wind stress & SST (2019)
Wind & SST accuracy

wind stress & SST (2019)

<table>
<thead>
<tr>
<th>wind speed</th>
<th>MAE</th>
<th>RMSE</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.11</td>
<td>1.45</td>
<td>0.83</td>
</tr>
<tr>
<td>2</td>
<td>1.13</td>
<td>1.48</td>
<td>0.84</td>
</tr>
<tr>
<td>3</td>
<td>1.94</td>
<td>2.51</td>
<td>0.81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SST</th>
<th>MAE</th>
<th>RMSE</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.05</td>
<td>1.29</td>
<td>0.98</td>
</tr>
<tr>
<td>2</td>
<td>1.20</td>
<td>1.40</td>
<td>0.87</td>
</tr>
<tr>
<td>3</td>
<td>1.03</td>
<td>1.29</td>
<td>0.56</td>
</tr>
</tbody>
</table>
Directional Constancy

\[DC = \frac{\sqrt{u^2 + v^2}}{\sqrt{u^2 + v^2}} \]
WIND-SST coupling

CW_gradSST vs Curl 2019

- Coastal wind
 - + distance to coast
 - + Wind-SST coupling
 - - Coastal orography
Orographic effect

Wind drop-off length (dashed line) \(\text{curl} = 5 \times 10^{-7} \, \text{s}^{-1} \)

Higher orography \(\rightarrow \) Narrower drop-off length \(\rightarrow \) Higher \% of wind drop-off (31N)

Lower orography \(\rightarrow \) Wider drop-off length \(\rightarrow \) Lower \% of wind drop-off (26.1N)
Coastline shape

Bearing compass
0°N, 90° W, 180° S, 270° E
Conclusions and next steps

Coastal orography, coastline shape and coastal SST cooling affect coastal wind shape.

Next steps

Biogeochemical model